Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 389
Filter
2.
Clin Transl Med ; 14(5): e1687, 2024 May.
Article in English | MEDLINE | ID: mdl-38738791

ABSTRACT

OBJECTIVE: It has been observed that the prognosis of patients with HER2-positive metastatic breast cancer has improved significantly with HER2-targeted agents. However, there is still a lack of evidence regarding first-line anti-HER2 treatment options for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, there are no reliable markers that can predict the efficacy of anti-HER2 treatment in these patients. METHODS: Patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer were enrolled. Pyrotinib plus albumin-bound paclitaxel were used as first-line treatment. The primary endpoint was the objective response rate (ORR). The safety profile was also assessed. In order to explore predictive biomarkers using Olink technology, blood samples were collected dynamically. RESULTS: From December 2019 to August 2023, the first stage of the study involved 27 eligible patients. It has not yet reached the median PFS despite the median follow-up being 17.8 months. Efficacy evaluation showed that the ORR was 92.6%, and the DCR was 100%. Adverse events of grade 3 or higher included diarrhoea (29.6%), leukopenia (11.1%), neutropenia (25.9%), oral mucositis (3.7%), and hand-foot syndrome (3.7%). Toll-like receptor 3 (TLR3) and Proto-oncogene tyrosine-protein kinase receptor (RET) were proteins with significant relevance to PFS in these patients. CONCLUSIONS: This study demonstrates that pyrotinib plus albumin-bound paclitaxel as a first-line treatment regimen shows good efficacy and manageable safety for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, a significant association was identified between the expression levels of TLR3 and RET and the PFS in patients.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Middle Aged , Adult , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Prospective Studies , Aged , Receptor, ErbB-2/metabolism , Albumin-Bound Paclitaxel/therapeutic use , Albumin-Bound Paclitaxel/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Acrylamides/therapeutic use , Neoadjuvant Therapy/methods , Proto-Oncogene Mas , Sulfinic Acids/therapeutic use , Sulfinic Acids/pharmacology , Aminoquinolines/therapeutic use , Aminoquinolines/pharmacology , Treatment Outcome
3.
Epigenetics ; 19(1): 2349980, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38716804

ABSTRACT

While epigenomic alterations are common in colorectal cancers (CRC), few epigenomic biomarkers that risk-stratify patients have been identified. We thus sought to determine the potential of ZNF331 promoter hypermethylation (mZNF331) as a prognostic and predictive marker in colon cancer. We examined the association of mZNF331 with clinicopathologic features, relapse, survival, and treatment efficacy in patients with stage III colon cancer treated within a randomized adjuvant chemotherapy trial (CALGB/Alliance89803). Residual tumour tissue was available for genomic DNA extraction and methylation analysis for 385 patients. ZNF331 promoter methylation status was determined by bisulphite conversion and fluorescence-based real-time polymerase chain reaction. Kaplan-Meier estimator and Cox proportional hazard models were used to assess the prognostic and predictive role of mZNF331 in this well-annotated dataset, adjusting for clinicopathologic features and standard molecular markers. mZNF331 was observed in 267/385 (69.4%) evaluable cases. Histopathologic features were largely similar between patients with mZNF331 compared to unmethylated ZNF331 (unmZNFF31). There was no significant difference in disease-free or overall survival between patients with mZNF331 versus unmZNF331 colon cancers, even when adjusting for clinicopathologic features and molecular marker status. Similarly, there was no difference in disease-free or overall survival across treatment arms when stratified by ZNF331 methylation status. While ZNF331 promoter hypermethylation is frequently observed in CRC, our current study of a small subset of patients with stage III colon cancer suggests limited applicability as a prognostic marker. Larger studies may provide more insight and clarity into the applicability of mZNF331 as a prognostic and predictive marker.


Subject(s)
Biomarkers, Tumor , Colonic Neoplasms , DNA Methylation , Promoter Regions, Genetic , Humans , Female , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Aged , Prognosis , Neoplasm Staging , Transcription Factors/genetics , Transcription Factors/metabolism , Adult , Trefoil Factor-3
4.
J Neurosurg Spine ; : 1-10, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788239

ABSTRACT

OBJECTIVE: The aim of this study was to design a novel lumbar cortical bone trajectory (CBT) penetrating the anterior, middle, and posterior vertebral area using imaging; measure the relevant parameters to find theoretical parameters and screw placement possibilities; and investigate the optimal implantation trajectory of the CBT in patients with osteoporosis. METHODS: Three types of CBTs with appropriate lengths were selected to simulate screw placement using Mimics software. These CBTs were classified as the leading tip of the trajectory pointing to the posterior quarter area (original CBT [CBT-O]) and middle (novel CBT A [CBT-A]) and anterior quarter (novel CBT B [CBT-B]) of the superior endplate. The authors then measured the maximum screw diameter (MSD) and length (MSL), cephalad (CA) and lateral (LA) angles, and bone mineral density (Hounsfield unit [HU] values) of the planned novel 3-column CBT screw placements. The differences in the parameters of the novel CBTs, the percentages of successfully planned CBT screws, and the factors that influenced the successful planning of 3-column CBT screws were analyzed. RESULTS: Three-column CBT screws were successfully designed in all segments of the lumbar spine. The success rate of the 3-column CBT planned screws was 72.25% (83.25% for CBT-A and 61.25% for CBT-B). From the CBT-O type, to the CBT-A type, to the CBT-B type, the LA, CA, and MSD of the novel CBT screws decreased with increasing trajectory length. The HU values of the three types of trajectories were all significantly higher than that of the traditional pedicle screw trajectory (p < 0.001). The main factor affecting successful planning of the 3-column CBT screw was pedicle width. CONCLUSIONS: Moderating adjustment of the original screw parameters by reducing LAs and CAs to penetrate the anterior, middle, and posterior columns of the vertebral body using the 3-column CBT screw is feasible, especially in the lower lumbar spine.

5.
Bioresour Technol ; 402: 130787, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703955

ABSTRACT

Slow dissolution/hydrolysis of insoluble/macromolecular organics and poor sludge filterability restrict the application potential of anaerobic membrane bioreactor (AnMBR). Bubble-free membrane microaeration was firstly proposed to overcome these obstacles in this study. The batch anaerobic digestion tests feeding insoluble starch and soluble peptone with and without microaeration showed that microaeration led to a 65.7-144.8% increase in methane production and increased critical flux of microfiltration membrane via driving the formation of large sludge flocs and the resultant improvement of sludge settleability. The metagenomic and bioinformatic analyses showed that microaeration significantly enriched the functional genes and bacteria for polysaccharide and protein hydrolysis, microaeration showed little negative effects on the functional genes involved in anaerobic metabolisms, and substrate transfer from starch to peptone significantly affected the functional genes and microbial community. This study demonstrates the dual synergism of microaeration to enhance the dissolution/hydrolysis/acidification of insoluble/macromolecular organics and sludge filterability for AnMBR application.


Subject(s)
Bioreactors , Filtration , Membranes, Artificial , Sewage , Bioreactors/microbiology , Sewage/microbiology , Anaerobiosis , Filtration/methods , Methane/metabolism , Hydrolysis , Starch/metabolism
6.
Int Immunopharmacol ; 133: 112126, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38669946

ABSTRACT

Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Neutrophils , STAT3 Transcription Factor , Th17 Cells , Th17 Cells/immunology , Humans , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Neutrophils/immunology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Interleukin-17/metabolism , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Cells, Cultured , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Asthma/immunology , Asthma/therapy , Male , Signal Transduction , Female , Disease Models, Animal
7.
Carbohydr Polym ; 332: 121884, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431405

ABSTRACT

The global healthcare challenge posed by COVID-19 necessitates the continuous exploration for novel antiviral agents. Fucoidans have demonstrated antiviral activity. However, the underlying structure-activity mechanism responsible for the inhibitory activity of fucoidans from Ascophyllum nodosum (FUCA) and Undaria pinnatifida (FUCU) against SARS-CoV-2 remains unclear. FUCA was characterized as a homopolymer with a backbone structure of repeating (1 â†’ 3) and (1 â†’ 4) linked α-l-fucopyranose residues, whereas FUCU was a heteropolysaccharide composed of Fuc1-3Gal1-6 repeats. Furthermore, FUCA demonstrated significantly higher anti-SARS-CoV-2 activity than FUCU (EC50: 48.66 vs 69.52 µg/mL), suggesting the degree of branching rather than sulfate content affected the antiviral activity. Additionally, FUCA exhibited a dose-dependent inhibitory effect on ACE2, surpassing the inhibitory activity of FUCU. In vitro, both FUCA and FUCU treatments downregulated the expression of pro-inflammatory cytokines (IL-6, IFN-α, IFN-γ, and TNF-α) and anti-inflammatory cytokines (IL-10 and IFN-ß) induced by viral infection. In hamsters, FUCA demonstrated greater effectiveness in attenuating lung and gastrointestinal injury and reducing ACE2 expression, compared to FUCU. Analysis of the 16S rRNA gene sequencing revealed that only FUCU partially alleviated the gut microbiota dysbiosis caused by SARS-CoV-2. Consequently, our study provides a scientific basis for considering fucoidans as poteintial prophylactic food components against SARS-CoV-2.


Subject(s)
Ascophyllum , COVID-19 , Edible Seaweeds , Polysaccharides , Undaria , Humans , Ascophyllum/chemistry , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , RNA, Ribosomal, 16S , Undaria/chemistry , Cytokines , Inflammation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
8.
J Clin Oncol ; : JCO2301507, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457761

ABSTRACT

PURPOSE: The phase III Cancer and Leukemia Group B (CALGB)/SWOG 80405 trial found no difference in overall survival (OS) in patients with metastatic colorectal cancer receiving first-line chemotherapy in combination with either bevacizumab or cetuximab. We investigated the potential prognostic and predictive value of HER2 amplification and gene expression using next-generation sequencing (NGS) and NanoString data. PATIENTS AND METHODS: Primary tumor DNA from 559 patients was profiled for HER2 amplification by NGS (FoundationOne CDx). Tumor tissue from 925 patients was tested for NanoString gene expression using an 800-gene panel. OS and progression-free survival (PFS) were the time-to-event end points. RESULTS: High HER2 expression (dichotomized at median) was associated with longer PFS (11.6 v 10 months, P = .012) and OS (32 v 25.3 months, P = .033), independent of treatment. An OS benefit for cetuximab versus bevacizumab was observed in the high HER2 expression group (P = .02), whereas a worse PFS for cetuximab was seen in the low-expression group (P = .019). When modeled as a continuous variable, increased HER2 expression was associated with longer OS (hazard ratio [HR], 0.83 [95% CI, 0.75 to 0.93]; adjusted P = .0007) and PFS (HR, 0.82 [95% CI, 0.74 to 0.91]; adjusted P = .0002), reaching a plateau effect after the median. In patients with HER2 expression lower than median, treatment with cetuximab was associated with worse PFS (HR, 1.38 [95% CI, 1.12 to 1.71]; adjusted P = .0027) and OS (HR, 1.28 [95% CI, 1.02 to 1.59]; adjusted P = .03) compared with that with bevacizumab. A significant interaction between HER2 expression and the treatment arm was observed for OS (Pintx = .017), PFS (Pintx = .048), and objective response rate (Pintx = .001). CONCLUSION: HER2 gene expression was prognostic and predictive in CALGB/SWOG 80405. HER2 tumor expression may inform treatment selection for patients with low HER2 favoring bevacizumab- versus cetuximab-based therapies.

9.
Biotechnol Prog ; : e3458, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494959

ABSTRACT

Recent advances in messenger ribonucleic acid (mRNA) vaccines and gene therapy vectors have increased the need for rapid plasmid DNA (pDNA) screening and production within the biopharmaceutical industry. High-throughput (HT) fermentor systems, such as the Ambr® 250 HT, can significantly accelerate process development timelines of pDNA upstream processes compared to traditional bench-scale glass fermentors or small-scale steam-in-place (SIP) fermentors. However, such scale-down models must be qualified to ensure that they are representative of the larger scale process similar to traditional small-scale models. In the current study, we developed a representative scale-down model of a Biostat® D-DCU 30 L pDNA fermentation process in Ambr® 250 HT fermentors using three cell lines producing three different constructs. The Ambr scale-down model provided comparable process performance and pDNA quality as the 30 L SIP fermentation process. In addition, we demonstrated the predictive value of the Ambr model by two-way qualification, first by accurately reproducing the prior trends observed in a 30 L process, followed by predicting new process trends that were then successfully reproduced in the 30 L process. The representative and predictive scale-down Ambr model developed in this study would enable a faster and more efficient approach to strain/clone/host-cell screening, pDNA process development and characterization studies, process scale-up studies, and manufacturing support.

10.
Cells ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38474345

ABSTRACT

Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3ß/ß-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of ß-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3ß/ß-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.


Subject(s)
Nuclear Proteins , Pluripotent Stem Cells , Transcription Factors , beta Catenin , Animals , Cattle , beta Catenin/metabolism , Cell Proliferation , Glycogen Synthase Kinase 3 beta/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transcription Factors/metabolism , Nuclear Proteins/metabolism
11.
Cancer Med ; 13(4): e6749, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38457242

ABSTRACT

OBJECTIVE: To assess fear of progression (FoP)'s relationship with symptom burden and disease and social/family factors, as well as, determine the status of FoP in women with stage-IV breast cancer in Shandong, China. METHODS: Two hundred and sixteen women were recruited from the department of breast cancer internal medicine, Shandong Cancer Hospital and Institute. Data for this observational study were collected between October 2020 and January 2021 using the MD Anderson Symptom Inventory, the Fear of Progression Questionnaire-Short Form (FoP-Q-SF) and a participant information scale. SPSS 23.0 was used for statistical analysis. RESULTS: After excluding invalid responses, the data of 200 participants were analysed. The average total FoP-Q-SF score was 29.39 ± 9.39 (95% confidence interval, 21.81-27.64). The FoP level among the participants was relatively low. For disease and social/family factors, FoP statistically significantly differed by satisfaction with family emotional support and the Eastern Cooperative Oncology Group (ECOG) score. The ECOG score was positively correlated with FoP. Furthermore, symptom burden was positively correlated with FoP. CONCLUSIONS: Among patients with stage-IV breast cancer, satisfaction with family emotional support, ECOG score and symptom burden play key roles in FoP. Interventions, including providing appropriate emotional support from family, improving physical fitness and relieving symptom burden, must be considered in future studies, which may improve patients' overall physical and mental status and provide a supportive therapeutic environment.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/psychology , Symptom Burden , Quality of Life/psychology , Fear/psychology , Surveys and Questionnaires , China/epidemiology , Disease Progression
12.
J Virol ; 98(4): e0013924, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38501663

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.


Subject(s)
Alphacoronavirus , Coronavirus Infections , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Alphacoronavirus/chemistry , Alphacoronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Heparitin Sulfate , N-Acetylneuraminic Acid/metabolism , Peptide Hydrolases , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
13.
Clin Chem ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38517460

ABSTRACT

BACKGROUND: Optical genome mapping (OGM) is a novel assay for detecting structural variants (SVs) and has been retrospectively evaluated for its performance. However, its prospective evaluation in prenatal diagnosis remains unreported. This study aimed to prospectively assess the technical concordance of OGM with standard of care (SOC) testing in prenatal diagnosis. METHODS: A prospective cohort of 204 pregnant women was enrolled in this study. Amniotic fluid samples from these women were subjected to OGM and SOC testing, which included chromosomal microarray analysis (CMA) and karyotyping (KT) in parallel. The diagnostic yield of OGM was evaluated, and the technical concordance between OGM and SOC testing was assessed. RESULTS: OGM successfully analyzed 204 cultured amniocyte samples, even with a cell count as low as 0.24 million. In total, 60 reportable SVs were identified through combined OGM and SOC testing, with 22 SVs detected by all 3 techniques. The diagnostic yield for OGM, CMA, and KT was 25% (51/204), 22.06% (45/204), and 18.14% (37/204), respectively. The highest diagnostic yield (29.41%, 60/204) was achieved when OGM and KT were used together. OGM demonstrated a concordance of 95.56% with CMA and 75.68% with KT in this cohort study. CONCLUSIONS: Our findings suggest that OGM can be effectively applied in prenatal diagnosis using cultured amniocytes and exhibits high concordance with SOC testing. The combined use of OGM and KT appears to yield the most promising diagnostic outcomes.

14.
Int J Palliat Nurs ; 30(2): 57-65, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38407155

ABSTRACT

BACKGROUND: Advance care planning enables people to record their future health and care wishes and appoint someone as an advocate. An advance directive can be made in the event that a person is incapacitated, so that their wishes are still upheld. The beliefs of the nephrology team might affect patients' choices and willingness to sign an advance directive. To increase the number of dialysis patients who have signed an advance directive, it is necessary to educate the nephrology medical staff. AIM: To explore the intention to sign an advance directive and its related factors among nephrology medical staff. METHODS: A cross-sectional and correlational design was used. This study recruited 160 nephrology medical staff. Data were analysed by using the Statistical Package for Social Science 21.0 for Windows. FINDINGS: The results found that the longer someone has worked as part of the nephology medical staff, the more knowledgeable they were about an advance directive. This led to them being more likely to want to sign an advance directive for themselves. CONCLUSION: In order to improve the knowledge and awareness of advance directives among nephrology medical staff, hospital managers should provide continuing education on this topic.


Subject(s)
Intention , Nephrology , Humans , Cross-Sectional Studies , Advance Directives , Medical Staff
15.
Clin Transl Med ; 14(2): e1565, 2024 02.
Article in English | MEDLINE | ID: mdl-38328889

ABSTRACT

BACKGROUND: Heart failure due to myocardial infarction (MI) involves fibrosis driven by epicardium-derived cells (EPDCs) and cardiac fibroblasts, but strategies to inhibit and provide cardio-protection remains poor. The imprinted gene, non-canonical NOTCH ligand 1 (Dlk1), has previously been shown to mediate fibrosis in the skin, lung and liver, but very little is known on its effect in the heart. METHODS: Herein, human pericardial fluid/plasma and tissue biopsies were assessed for DLK1, whereas the spatiotemporal expression of Dlk1 was determined in mouse hearts. The Dlk1 heart phenotype in normal and MI hearts was assessed in transgenic mice either lacking or overexpressing Dlk1. Finally, in/ex vivo cell studies provided knowledge on the molecular mechanism. RESULTS: Dlk1 was demonstrated in non-myocytes of the developing human myocardium but exhibited a restricted pericardial expression in adulthood. Soluble DLK1 was twofold higher in pericardial fluid (median 45.7 [34.7 (IQR)) µg/L] from cardiovascular patients (n = 127) than in plasma (median 26.1 µg/L [11.1 (IQR)]. The spatial and temporal expression pattern of Dlk1 was recapitulated in mouse and rat hearts. Similar to humans lacking Dlk1, adult Dlk1-/- mice exhibited a relatively mild developmental, although consistent cardiac phenotype with some abnormalities in heart size, shape, thorax orientation and non-myocyte number, but were functionally normal. However, after MI, scar size was substantially reduced in Dlk1-/- hearts as compared with Dlk1+/+ littermates. In line, high levels of Dlk1 in transgenic mice Dlk1fl/fl xWT1GFPCre and Dlk1fl/fl xαMHCCre/+Tam increased scar size following MI. Further mechanistic and cellular insight demonstrated that pericardial Dlk1 mediates cardiac fibrosis through epithelial to mesenchymal transition (EMT) of the EPDC lineage by maintaining Integrin ß8 (Itgb8), a major activator of transforming growth factor ß and EMT. CONCLUSIONS: Our results suggest that pericardial Dlk1 embraces a, so far, unnoticed role in the heart augmenting cardiac fibrosis through EMT. Monitoring DLK1 levels as well as targeting pericardial DLK1 may thus offer new venues for cardio-protection.


Subject(s)
Epithelial-Mesenchymal Transition , Myocardial Infarction , Adult , Animals , Humans , Mice , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cicatrix/metabolism , Cicatrix/pathology , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Ligands , Mice, Transgenic , Myocardial Infarction/genetics , Pericardium/metabolism , Thorax/pathology
16.
iScience ; 27(2): 109015, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38327793

ABSTRACT

Anaplastic lymphoma kinase (ALK) is a highly responsive therapeutic target for ALK-rearranged non-small cell lung cancer (NSCLC). However, patients with this cancer invariably relapse because of the development of ALK inhibitor resistance resulting from mutations within the ALK tyrosine kinase domain. Herein, we report the discovery of dEALK1, a small-molecule degrader of EML4-ALK fusion proteins, with capability of overcoming resistance to ALK inhibitor ceritinib. dEALK1 induces rapid and selective degradation of wild-type (WT) EML4-ALK and mutated EML4-ALKs acquiring resistance to ceritinib, leading to inhibition of cell proliferation and increase of apoptosis in NSCLC cells expressing WT EML4-ALK or ceritinib-resistant EML4-ALK mutants in vitro. Furthermore, dEALK1 also exerts a potent antitumor activity against EML4-ALK-positive xenograft tumors without or with harboring ceritinib-resistant EML4-ALK mutations in vivo. Our study suggests that dEALK1-induced degradation of EML4-ALK fusion proteins is a promising therapeutic strategy for treatment of ALK-rearranged lung cancer with ceritinib resistance.

17.
Eur J Cancer ; 201: 113914, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359495

ABSTRACT

BACKGROUND: CDC37 is a key determinant of client kinase recruitment to the HSP90 chaperoning system. We hypothesized that kinase-specific dependency on CDC37 alters the efficacy of targeted therapies for metastatic colorectal cancer (mCRC). MATERIAL AND METHODS: Two independent mCRC cohorts were analyzed to compare the survival outcomes between CDC37-high and CDC37-low patients (stratified by the median cutoff values): the CALGB/SWOG 80405 trial (226 and 207 patients receiving first-line bevacizumab- and cetuximab-containing chemotherapies, respectively) and Japanese retrospective (50 refractory patients receiving regorafenib) cohorts. A dataset of specimens submitted to a commercial CLIA-certified laboratory was utilized to characterize molecular profiles of CDC37-high (top quartile, N = 5055) and CDC37-low (bottom quartile, N = 5055) CRCs. RESULTS: In the bevacizumab-treated group, CDC37-high patients showed significantly better progression-free survival (PFS) (median 13.3 vs 9.6 months, hazard ratio [HR] 0.59, 95% confidence interval [CI] 0.44-0.79, p < 0.01) than CDC37-low patients. In the cetuximab-treated group, CDC37-high and CDC37-low patients had similar outcomes. In the regorafenib-treated group, CDC37-high patients showed significantly better overall survival (median 11.3 vs 6.0 months, HR 0.24, 95% CI 0.11-0.54, p < 0.01) and PFS (median 3.5 vs 1.9 months, HR 0.51, 95% CI 0.28-0.94, p = 0.03). Comprehensive molecular profiling revealed that CDC37-high CRCs were associated with higher VEGFA, FLT1, and KDR expressions and activated hypoxia signature. CONCLUSIONS: CDC37-high mCRC patients derived more benefit from anti-VEGF therapies, including bevacizumab and regorafenib, but not from cetuximab. Molecular profiles suggested that such tumors were dependent on angiogenesis-relating pathways.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Phenylurea Compounds , Pyridines , Rectal Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols , Bevacizumab/therapeutic use , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cetuximab/therapeutic use , Chaperonins/genetics , Chaperonins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression , Molecular Chaperones , Retrospective Studies
18.
Oncol Lett ; 27(3): 90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38268778

ABSTRACT

[This retracts the article DOI: 10.3892/ol.2020.11271.].

19.
J Immunother Cancer ; 12(1)2024 01 11.
Article in English | MEDLINE | ID: mdl-38212126

ABSTRACT

BACKGROUND: The C-C motif chemokine receptor 5 (CCR5)/C-C motif chemokine ligand 5 (CCL5) axis plays a major role in colorectal cancer (CRC). We aimed to characterize the molecular features associated with CCR5/CCL5 expression in CRC and to determine whether CCR5/CCL5 levels could impact treatment outcomes. METHODS: 7604 CRCs tested with NextGen Sequencing on DNA and RNA were analyzed. Molecular features were evaluated according to CCR5 and CCL5 tumor gene expression quartiles. The impact on treatment outcomes was assessed in two cohorts, including 6341 real-world patients and 429 patients from the Cancer and Leukemia Group B (CALGB)/SWOG 80405 trial. RESULTS: CCR5/CCL5 expression was higher in right-sided versus left-sided tumors, and positively associated with consensus molecular subtypes 1 and 4. Higher CCR5/CCL5 expression was associated with higher tumor mutational burden, deficiency in mismatch repair and programmed cell death ligand 1 (PD-L1) levels. Additionally, high CCR5/CCL5 were associated with higher immune cell infiltration in the tumor microenvironment (TME) of MMR proficient tumors. Ingenuity pathway analysis revealed upregulation of the programmed cell death protein 1 (PD-1)/PD-L1 cancer immunotherapy pathway, phosphatase and tensin homolog (PTEN) and peroxisome proliferator-activated receptors (PPAR) signaling, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) signaling in cytotoxic T lymphocytes, whereas several inflammation-related pathways were downregulated. Low CCR5/CCL5 expression was associated with increased benefit from cetuximab-FOLFOX treatment in the CALGB/SWOG 80405 trial, where significant treatment interaction was observed with biologic agents and chemotherapy backbone. CONCLUSIONS: Our data show a strong association between CCR5/CCL5 gene expression and distinct molecular features, gene expression profiles, TME cell infiltration, and treatment benefit in CRC. Targeting the CCR5/CCL5 axis may have clinical applications in selected CRC subgroups and may play a key role in developing and deploying strategies to modulate the immune TME for CRC treatment.


Subject(s)
Colorectal Neoplasms , Receptors, Chemokine , Humans , B7-H1 Antigen/genetics , Ligands , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Chemokines/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression , Tumor Microenvironment , Receptors, CCR5/genetics , Receptors, CCR5/metabolism
20.
Bioorg Chem ; 143: 107015, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086241

ABSTRACT

Conventional topoisomerase (Topo) inhibitors typically usually exert their cytotoxicity by damaging the DNAs, which exhibit high toxicity and tend to result in secondary carcinogenesis risk. Molecules that have potent topoisomerase inhibitory activity but involve less DNA damage provide more desirable scaffolds for developing novel chemotherapeutic agents. In this work, we broke the rigid pentacyclic system of luotonin A and synthesized thirty-three compounds as potential Topo inhibitors based on the devised molecular motif. Further investigation disclose that two compounds with the highest antiproliferation activity against cancer cells, 5aA and 5dD, had a distinct Topo I inhibitory mechanism different from those of the classic Topo I inhibitors CPT or luteolin, and were able to obviate the obvious cellular DNA damage typically associated with clinically available Topo inhibitors. The animal model experiments demonstrated that even in mice treated with a high dosage of 50 mg/kg 5aA, there were no obvious signs of toxicity or loss of body weight. The tumor growth inhibition (TGI) rate was 54.3 % when 20 mg/kg 5aA was given to the T24 xenograft mouse model, and 5aA targeted the cancer tissue precisely without causing damage to the liver and other major organs.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Quinones , Pyrroles , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , DNA Damage , DNA Topoisomerases, Type I/metabolism , Topoisomerase II Inhibitors/pharmacology , DNA Topoisomerases, Type II , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...