Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(32): 10578-10585, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28146151

ABSTRACT

Cobalt oxide decorated octahedral ceria hollow structures (CoOx/CeO2) with various contents of CoOx nanoparticles were prepared via a simple chemical impregnation method. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse-reflectance spectroscopy (DRS), surface photovoltage spectroscopy (SPV) and transient photovoltage spectroscopy (TPV). The photocatalytic oxygen evolution via water oxidation was investigated for the as-prepared CoOx/CeO2 nanocage composites. The photocatalytic results indicate that the CoOx/CeO2 nanocage composite with 1 mol% CoOx shows the highest photocatalytic activity. The excellent photocatalytic activity can be attributed to the improved visible-light absorption of CoOx/CeO2 composites and the efficient separation of excited electron-hole pairs between CoOx and CeO2, which can effectively enhance the lifetime of charge carriers in the CoOx-modified samples and then improve the oxygen evolution activity. Cobalt oxide is expected to be an excellent water oxidation co-catalyst for semiconductor photocatalysts.

2.
J Colloid Interface Sci ; 483: 146-153, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27552423

ABSTRACT

The vertically aligned one-dimensional (1D) ZnO nanorod arrays decorated with AuPd alloy nanoparticles have been synthesized with ZnO nanorod arrays as template via a mild hydrothermal method. In this work, the as-prepared AuPd/ZnO nanorod arrays demonstrated high light-harvesting efficiency. The microstructures, morphologies and chemical properties of the obtained AuPd/ZnO composite photocatalyst were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectroscopy (XPS). The photoelectrochemical (PEC) performances of as-obtained AuPd/ZnO nanorod arrays were examined, and the photocurrent density was up to 0.98mAcm(-2) at 0.787V versus Ag/AgCl, which was about 2.4 times higher than the pure ZnO sample. A possible photocatalytic mechanism of the AuPd/ZnO hybrid nanostructures under the simulated sunlight irradiation was proposed to guide further improvement of other desirable materials. According to the above experiment results, it can be clearly found that AuPd/ZnO composite nanorod arrays showed excellent PEC performance and had promising applications in the utilization of solar energy.

3.
J Hazard Mater ; 300: 93-103, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26163484

ABSTRACT

Novel Ag@CeO2 core-shell nanostructures with well-controlled shape and shell thickness were successfully synthesized via a green and facile template-free approach in aqueous solution. As-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (DRS), electron spin resonance (ESR) and photoluminescence spectroscopy (PL). The structures with different core shapes and controllable shell thickness exhibited unique optical properties. It is found that the nanoscale Ag@CeO2 core-shell photocatalysts exhibit significantly enhanced photocatalytic activities in the O2 evolution and MB dye degradation compared to pure CeO2 nanoparticals. The enhancement in photocatalytic activities can be ascribed to the localized surface plasmon resonance (SPR) of Ag cores. Moreover, larger active interfacial areas and contact between metal/semiconductor in the core-shell structure facilitate transfer of charge carriers and prolong lifetime of photogenerated electron-hole pairs. It is expected that the Ag@CeO2 core-shell structure may have great potential in a wider range of light-harvesting applications.

SELECTION OF CITATIONS
SEARCH DETAIL