Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters











Publication year range
1.
Dalton Trans ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324845

ABSTRACT

Herein, we synthesized new manganese(I) complexes coordinated with the tetradentate ligand PNNP. The complexes show higher activity and excellent substituent tolerance in contrast to their manganese counterparts and are applicable in the hydrogenation of a wide range of aromatic, aliphatic and heterocyclic ketones to their corresponding alcohols.

2.
Nanomaterials (Basel) ; 14(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39269077

ABSTRACT

In this investigation, the laser marker ablation technique was employed on Cu-coated glass to fabricate micro-nanostructured antifog glass. The resulting surfaces exhibited a quasi-periodic micron hillock-hollow structure with dispersed nanoparticles distributed throughout, which played a role in the antifog property and superhydrophilicity. However, airborne organic pollutant deposition degraded the superhydrophilicity of ablated glass surfaces and, therefore, their antifog performance, which cannot be circumvented. Conventionally, furnace annealing for at least 1 h was used to decompose the organic pollutants and restore the superhydrophilicity, limiting the throughput and application scenario. Remarkably, the rapid regeneration of this property was achieved through either a 5 min rapid thermal treatment at 400 °C or a 1 s flame treatment. These are interventions that are hitherto unreported. Such short and simple treatment methods underscore the potential of laser-ablated glass for diverse practical applications.

3.
Yi Chuan ; 46(4): 333-345, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38632095

ABSTRACT

China has a high dependence on soybean imports, yield increase at a faster rate is an urgent problem that need to be solved at present. The application of heterosis is one of the effective ways to significantly increase crop yield. In recent years, the development of an intelligent male sterility system based on recessive nuclear sterile genes has provided a potential solution for rapidly harnessing the heterosis in soybean. However, research on male sterility genes in soybean has been lagged behind. Based on transcriptome data of soybean floral organs in our research group, a soybean stamen-preferentially expressed gene GmFLA22a was identified. It encodes a fasciclin-like arabinogalactan protein with the FAS1 domain, and subcellular localization studies revealed that it may play roles in the endoplasmic reticulum. Take advantage of the gene editing technology, the Gmfla22a mutant was generated in this study. However, there was a significant reduction in the seed-setting rate in the mutant plants at the reproductive growth stage. The pollen viability and germination rate of Gmfla22a mutant plants showed no apparent abnormalities. Histological staining demonstrated that the release of pollen grains in the mutant plants was delayed and incomplete, which may due to the locule wall thickening in the anther development. This could be the reason of the reduced seed-setting rate in Gmfla22a mutants. In summary, our study has preliminarily revealed that GmFLA22a may be involved in regulating soybean male fertility. It provides crucial genetic materials for further uncovering its molecular function and gene resources and theoretical basis for the utilization of heterosis in soybean.


Subject(s)
Glycine max , Infertility, Male , Male , Humans , Plants , Pollen/genetics , Fertility , Plant Infertility/genetics , Gene Expression Regulation, Plant
4.
Genes Dis ; 11(4): 101155, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523676

ABSTRACT

Genetic mutations in TP53 contribute to human malignancies through various means. To date, there have been a variety of therapeutic strategies targeting p53, including gene therapy to restore normal p53 function, mutant p53 rescue, inhibiting the MDM2-p53 interaction, p53-based vaccines, and a number of other approaches. This review focuses on the functions of TP53 and discusses the aberrant roles of mutant p53 in various types of cancer. Recombinant human p53 adenovirus, trademarked as Gendicine, which is the first anti-tumor gene therapy drug, has made tremendous progress in cancer gene therapy. We herein discuss the biological mechanisms by which Gendicine exerts its effects and describe the clinical responses reported in clinical trials. Notably, the clinical studies suggest that the combination of Gendicine with chemotherapy and/or radiotherapy may produce more pronounced efficacy in slowing tumor growth and progression than gene therapy/chemotherapy alone. Finally, we summarize the methods of administration of recombinant human p53 adenovirus for different cancer types to provide a reference for future clinical trials.

5.
Plant Biotechnol J ; 21(11): 2322-2332, 2023 11.
Article in English | MEDLINE | ID: mdl-37475199

ABSTRACT

A complete and genetically stable male sterile line with high outcrossing rate is a prerequisite for the development of commercial hybrid soybean. It was reported in the last century that the soybean male sterile ms2 mutant has the highest record with seed set. Here we report the cloning and characterization of the MS2 gene in soybean, which encodes a protein that is specifically expressed in the anther. MS2 functions in the tapetum and microspore by directly regulating genes involved in the biosynthesis of secondary metabolites and the lipid metabolism, which is essential for the formation of microspore cell wall. Through comparison of the field performance with the widely used male sterile mutants in the same genetic background, we demonstrated that the ms2 mutant conducts the best in outcrossing rate and makes it an ideal tool in building a cost-effective hybrid system for soybean.


Subject(s)
Glycine max , Plant Infertility , Glycine max/genetics , Glycine max/metabolism , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Plant Breeding , Fertility/genetics , Gene Expression Regulation, Plant
6.
Mol Breed ; 43(6): 47, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37309310

ABSTRACT

Hybrid breeding can help us to meet the challenge of feeding a growing world population with limited agricultural land. The demand for soybean is expected to grow; however, the hybrid soybean is still in the process of commercialization even though considerable progress has been made in soybean genome and genetic studies in recent years. Here, we summarize recent advances in male sterility-based breeding programs and the current status of hybrid soybean breeding. A number of male-sterile lines with cytoplasmic male sterility (CMS), genic-controlled photoperiod/thermo-sensitive male sterility, and stable nuclear male sterility (GMS) have been identified in soybean. More than 40 hybrid soybean varieties have been bred using the CMS three-line hybrid system and the cultivation of hybrid soybean is still under way. The key to accelerating hybrid soybean breeding is to increase the out-crossing rate in an economical way. This review outlines current problems with the hybrid soybean breeding systems and explores the current efforts to make the hybrid soybean a commercial success.

7.
Inflamm Res ; 72(7): 1485-1500, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37335321

ABSTRACT

OBJECTIVE: Fungal keratitis is a severe sight-threatening ocular infection, without effective treatment strategies available now. Calprotectin S100A8/A9 has recently attracted great attention as a critical alarmin modulating the innate immune response against microbial challenges. However, the unique role of S100A8/A9 in fungal keratitis is poorly understood. METHODS: Experimental fungal keratitis was established in wild-type and gene knockout (TLR4-/- and GSDMD-/-) mice by infecting mouse corneas with Candida albicans. The degree of mouse cornea injuries was evaluated by clinical scoring. To interrogate the molecular mechanism in vitro, macrophage RAW264.7 cell line was challenged with Candida albicans or recombinant S100A8/A9 protein. Label-free quantitative proteomics, quantitative real-time PCR, Western blotting, and immunohistochemistry were conducted in this research. RESULTS: Herein, we characterized the proteome of mouse corneas infected with Candida albicans and found that S100A8/A9 was robustly expressed at the early stage of the disease. S100A8/A9 significantly enhanced disease progression by promoting NLRP3 inflammasome activation and Caspase-1 maturation, accompanied by increased accumulation of macrophages in infected corneas. In response to Candida albicans infection, toll-like receptor 4 (TLR4) sensed extracellular S100A8/A9 and acted as a bridge between S100A8/A9 and NLRP3 inflammasome activation in mouse corneas. Furthermore, the deletion of TLR4 resulted in noticeable improvement in fungal keratitis. Remarkably, NLRP3/GSDMD-mediated macrophage pyroptosis in turn facilitates S100A8/A9 secretion during Candida albicans keratitis, thus forming a positive feedback cycle that amplifies the proinflammatory response in corneas. CONCLUSIONS: The present study is the first to reveal the critical roles of the alarmin S100A8/A9 in the immunopathology of Candida albicans keratitis, highlighting a promising approach for therapeutic intervention in the future.


Subject(s)
Candida albicans , Keratitis , Mice , Animals , Candida albicans/metabolism , Inflammasomes/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Alarmins , Feedback , Keratitis/genetics , Keratitis/microbiology , Immunity, Innate , Calgranulin A/genetics
8.
Environ Sci Technol ; 57(13): 5380-5390, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36942846

ABSTRACT

As a group of new nanomaterials, nanoscale metal-organic frameworks (MOFs) are widely applied in the biomedical field, exerting unknown risks to the human body, especially the central nervous system. Herein, the impacts of MOF-74-Zn nanoparticles on neurological behaviors and neurotransmitter metabolism are explored in both in vivo and in vitro assays modeled by C57BL/6 mice and PC12 cells, respectively. The mice exhibit increased negative-like behaviors, as demonstrated by the observed decrease in exploring behaviors and increase in despair-like behaviors in the open field test and forced swimming test after exposure to low doses of MOF-74-Zn nanoparticles. Disorders in the catecholamine neurotransmitter metabolism may be responsible for the MOF-74-Zn-induced abnormal behaviors. Part of the reason for this is the inhibition of neurotransmitter synthesis caused by restrained neurite extension. In addition, MOF-74-Zn promotes the translocation of more calcium into the cytoplasm, accelerating the release and uptake and finally resulting in an imbalance between synthesis and catabolism. Taken together, the results from this study indicate the human toxicity risks of nanoscale low-toxicity metal-based MOFs and provide valuable insight into the rational and safe use of MOF nanomaterials.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Rats , Animals , Mice , Humans , Catecholamines , Zinc/toxicity , Mice, Inbred C57BL
9.
Small ; 19(3): e2205706, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36408820

ABSTRACT

The restricted charge transfer and slow oxygen evolution reaction (OER) dynamics tremendously hamper the realistic implementation of SnS2 photoanodes for photoelectrochemical (PEC) water splitting. Here, a novel strategy is developed to construct interfacial NCuS bonds between NC skeletons and SnS2 (CuNC@SnS2 ) for efficient PEC water splitting. Compared with SnS2 , the PEC activity of CuNC@SnS2 photoelectrode is tremendously heightened, obtaining a current density of 3.40 mA cm2 at 1.23 VRHE with a negatively shifted onset potential of 0.04 VRHE , which is 6.54 times higher than that of SnS2 . The detailed experimental characterizations and theoretical calculation demonstrate that the interfacial NCuS bonds enhance the OER kinetic, reduce the surface overpotential, facilitate the separation of photon-generated carriers, and provide a fast transmission channel for electrons. This work presents a new approach for modulating charge transfer by interfacial bond design in heterojunction photoelectrodes toward promoting PEC performance and solar energy application.

10.
Life Sci ; 307: 120881, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35963303

ABSTRACT

Fungal keratitis is one of the leading causes of blindness worldwide, which has become an increasingly serious threat to public ocular health, but no effective treatment strategies are available now. Pattern recognition receptors (PRRs) of the innate immune system are the first line of host defense against fungal infections. They could recognize pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and trigger an array of inflammatory responses. Over the last decades, research has resulted in significant progress regarding the roles of PRRs in fungal keratitis. This review will highlight the importance of several pattern recognition receptors (C-type lectin-like receptors, Toll-like receptors, and NOD-like receptors) in regulating the innate immunity under fungal keratitis and describe the crosstalk and collaboration in PRRs contributing to disease pathology. Meanwhile, some potential therapy-based PRRs against corneal fungal infections are discussed.


Subject(s)
Keratitis , Mycoses , Humans , Immunity, Innate , Keratitis/microbiology , Lectins, C-Type , NLR Proteins , Pathogen-Associated Molecular Pattern Molecules , Receptors, Pattern Recognition , Toll-Like Receptors
11.
Front Med (Lausanne) ; 9: 845129, 2022.
Article in English | MEDLINE | ID: mdl-35463001

ABSTRACT

Purpose: Fungal keratitis is a sight-threatening corneal infection caused by fungal pathogens, and the pathogenic mechanisms have not been fully elucidated. The aim of this study was to determine whether NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated pyroptosis contributes to Candida albicans (C. albicans) keratitis and explore the underlying mechanism. Methods: An in vivo mouse model of C. albicans keratitis and an in vitro culture model of human corneal epithelial cells (HCECs) challenged with heat-killed C. albicans (HKCA) were established in this study. The degree of corneal infection was evaluated by clinical scoring. Gene expression was assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis or immunofluorescence staining was performed to evaluate protein expression. TdT-mediated dUTP nick end labeling (TUNEL) staining was performed to examine the pyroptotic cell death. A lactate dehydrogenase (LDH) release assay was performed to assess cytotoxicity. Results: Compared with the mock-infected group, we observed that the mRNA levels of NLRP3, caspase-1 (CASP1), interleukin (IL)-1ß and gasdermin-D (GSDMD) in C. albicans-infected mice cornea was significantly increased. Our data also demonstrated that the protein expression of NLRP3 and the pyroptosis-related markers apoptosis-associated speck-like protein containing a CARD (ASC), cleaved CASP1, N-GSDMD, cleaved IL-1ß and cleaved IL-18 as well as pyroptotic cell death were dramatically elevated in the mouse model of C. albicans keratitis. More importantly, NLRP3 knockdown markedly alleviated pyroptosis and consequently reduced corneal inflammatory reaction in C. albicans keratitis. In vitro, the presence of activated NLRP3 inflammasome and pyroptotic cell death were validated in HCECs exposed to HKCA. Furthermore, the potassium (K+) channel inhibitor glyburide decreased LDH release and suppressed NLRP3 inflammasome activation and pyroptosis in HCECs exposed to HKCA. Conclusion: In conclusion, the current study revealed for the first time that NLRP3 inflammasome activation and pyroptosis occur in C. albicans-infected mouse corneas and HCECs. Moreover, NLRP3 inflammasome-mediated pyroptosis signaling is involved in the disease severity of C. albicans keratitis. Therefore, This NLRP3 inflammasome-dependent pathway may be an attractive target for the treatment of fungal keratitis.

12.
Sci China Life Sci ; 64(9): 1533-1545, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34236584

ABSTRACT

Male sterility is an essential trait in hybrid seed production, especially for monoclinous and autogamous food crops. Soybean male-sterile ms1 mutant has been known for more than 50 years and could be instrumental in making hybrid seeds. However, the gene responsible for the male-sterile phenotype has remained unknown. Here, we report the map-based cloning and characterization of the MS1 gene in soybean. MS1 encodes a kinesin protein and localizes to the nucleus, where it is required for the male meiotic cytokinesis after telophase II. We further substantiated that MS1 colocalizes with microtubules and is essential for cell plate formation in soybean male gametogenesis through immunostaining. Both ms1 and CRISPR/Cas9 knockout mutants show complete male sterility but are otherwise phenotypically normal, making them perfect tools for producing hybrid seeds. The identification of MS1 has the practical potential for assembling the sterility system and speeding up hybrid soybean breeding.


Subject(s)
Genes, Plant , Glycine max/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Seeds/genetics , CRISPR-Cas Systems , Hybridization, Genetic , Phenotype , Plant Breeding
13.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: mdl-34172446

ABSTRACT

Enhancing critical heat flux (CHF) during boiling with structured surfaces has received much attention because of its important implications for two-phase flow. The role of surface structures on bubble evolution and CHF enhancement remains unclear because of the lack of direct visualization of the liquid- and solid-vapor interfaces. Here, we use high-magnification in-liquid endoscopy to directly probe bubble behavior during boiling. We report the previously unidentified coexistence of two distinct three-phase contact lines underneath growing bubbles on structured surfaces, resulting in retention of a thin liquid film within the structures between the two contact lines due to their disparate advancing velocities. This finding sheds light on a previously unidentified mechanism governing bubble evolution on structured surfaces, which has notable implications for a variety of real systems using bubble formation, such as thermal management, microfluidics, and electrochemical reactors.

14.
RSC Adv ; 11(28): 17346-17351, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479672

ABSTRACT

Two dimeric Ln-Cr clusters with formula {Ln(H2O)8[Ln6Cr3(L)6(CH3COO)6(µ3-OH)12(H2O)12]}·(ClO4)6·xH2O (Ln = Gd, x = 35 for 1 and Ln = Dy, x = 45 for 2, HL = 2-pyrazinecarboxylic acid) were obtained by a ligand-controlled hydrolytic method with a mixed ligand system (2-pyrazinecarboxylic acid and acetate). Single crystal structure analysis showed that two trigonal bipyramids of [Gd3Cr2(µ3-OH)6]9+ worked as building blocks in constructing the metal-oxo cluster core of [Gd6Cr3(µ3-OH)12]15+ by sharing a common top - a Cr3+ ion. Additionally, compound 1 forms a three-dimensional framework with a one-dimensional nanopore channel along the a-axis through a hydrogen-bond interaction between the cationic cluster core and the free mononuclear cation [Gd(H2O)8]3+ and the π-bond interactions of the pyrazine groups on the two cationic cluster cores. Magnetic calculations indicated a weak ferromagnetic coupling interaction for Gd⋯Gd and Gd⋯Cr in compound 1, with its magnetic entropy change (-ΔS m) reaching 21.1 J kg-1 K-1 at 5 K, 7 T, while compound 2 displayed an obvious frequency-dependency at H dc = 2000 Oe.

15.
Sci China Life Sci ; 64(2): 179-195, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33230598

ABSTRACT

Soybean, a typical short-day crop, is sensitive to photoperiod, which is a major limiting factor defining its north-to-south cultivation range. The long-juvenile (LJ) trait is controlled primarily by the J locus which has been used for decades by soybean breeders to delay flowering and improve grain yield in tropical regions. The J gene encodes an ortholog of the Arabidopsis Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). To identify modifiers of J, we conducted a forward genetic screen and isolated a mutant (eoj57) that in combination with j has longer flowering delay compared with j single mutant plants. Map-based cloning and genome re-sequencing identified eoj57 (designated as GmLUX2) as an ortholog of the Arabidopsis EC component LUX ARRHYTHMO (LUX). To validate that GmLUX2 is a modifier of J, we used trans-complementation and identified a natural variant allele with a similar phenotype. We also show that GmLUX2 physically interacts with GmELF3a/b and binds DNA, whereas the mutant and natural variant are attenuated in both activities. Transcriptome analysis shows that the GmLUX2-GmELF3a complex co-regulates the expression of several circadian clock-associated genes and directly represses E1 expression. These results provide mechanistic insight into how GmLUX2-GmELF3 controls flowering time via synergistic regulation of gene expression. These novel insights expand our understanding of the regulation of the EC complex, and facilitate the development of soybean varieties adapted for growth at lower latitudes.


Subject(s)
Adaptation, Physiological/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Glycine max/genetics , Photoperiod , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Flowers/metabolism , Gene Expression Profiling/methods , Genetic Complementation Test , Mutation , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Binding , Sequence Homology, Amino Acid , Glycine max/metabolism , Time Factors
16.
Micromachines (Basel) ; 11(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979000

ABSTRACT

With the increase of working frequency, the feature size of a corrugated horn will be greatly reduced, causing challenges for fabrication. This paper investigated wire electrochemical micromachining (WECMM) of aluminum rings for assembly of a mandrel for electroforming, which has been a primary method for producing corrugated horns. By utilizing a rotary helical electrode and green additives, the removal efficiency of electrolytic products in WECMM was improved. It was found that the machined slits had good unilateral consistency on the left side of the electrode feeding direction when the electrode rotated clockwise. Complexing agent glutamic diacetic acid (GLDA) can compete with OH- for Al3+ and has an obvious effect in reducing insoluble electrolytic products. From experimental investigations on typical parameters, an optimal parameter combination considering slit homogeneity and machining efficiency was obtained. In an electrolyte solution containing 15 g/L sodium nitrate solution and 15 g/L GLDA, 100 µm-thick aluminum rings with good edge and surface qualities were fabricated at a rate of 1.2 µm/s using a helical electrode with a diameter of 0.3 mm. Finally, these aluminum rings were successfully applied to make an internal corrugated sample with a rib width of 100 µm and a groove depth of 500 µm.

17.
Plant Physiol ; 182(1): 301-317, 2020 01.
Article in English | MEDLINE | ID: mdl-31719152

ABSTRACT

Meiosis is a critical process for sexual reproduction. During meiosis, genetic information on homologous chromosomes is shuffled through meiotic recombination to produce gametes with novel allelic combinations. Meiosis and recombination are orchestrated by several mechanisms including regulation by small RNAs (sRNAs). Our previous work in Arabidopsis (Arabidopsis thaliana) meiocytes showed that meiocyte-specific sRNAs (ms-sRNAs) have distinct characteristics, including positive association with the coding region of genes that are transcriptionally upregulated during meiosis. Here, we characterized the ms-sRNAs in two important crops, soybean (Glycine max) and cucumber (Cucumis sativus). Ms-sRNAs in soybean have the same features as those in Arabidopsis, suggesting that they may play a conserved role in eudicots. We also investigated the profiles of microRNAs (miRNAs) and phased secondary small interfering RNAs in the meiocytes of all three species. Two conserved miRNAs, miR390 and miR167, are highly abundant in the meiocytes of all three species. In addition, we identified three novel cucumber miRNAs. Intriguingly, our data show that the previously identified phased secondary small interfering RNA pathway involving soybean-specific miR4392 is more abundant in meiocytes. These results showcase the conservation and divergence of ms-sRNAs in flowering plants, and broaden our understanding of sRNA function in crop species.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cucumis sativus/genetics , Glycine max/genetics , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , MicroRNAs/genetics
18.
Materials (Basel) ; 12(16)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394822

ABSTRACT

Since engineering ceramics have many characteristics, including hardness, brittleness, and high melting point, traditional machining methods can no longer play a useful role in precision machining. Based on this situation, a platform of electrochemical discharge compound mechanical grinding was constructed and is presented in this paper, and machining experiments of micro-grooves were carried out in alumina ceramics. Grooves were observed by scanning electron microscope (SEM), and the morphology and the groove width of micro-grooves under different machining parameters were compared and analyzed. Furthermore, in order to study the improvement effect of mechanical grinding on machining quality, the surface roughness of micro-grooves was measured by a confocal material microscope. The results show that as the pulse power supply voltage increases or the frequency decreases, the width of the micro-grooves increases, and the morphology of the micro-grooves first improves and then deteriorates. With the increase of tool electrode rotation speed, the width of micro-grooves first increases and then remains unchanged, and the morphology and the surface roughness of micro-grooves first improves and then remains stable. Finally, the optimal parameters (power voltage of 20 V, pulse frequency of 400 Hz, electrode rotation speed of 600 rpm) were chosen to machine micro-grooves with good quality.

19.
Nat Neurosci ; 22(8): 1345-1356, 2019 08.
Article in English | MEDLINE | ID: mdl-31285614

ABSTRACT

Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.


Subject(s)
Dependovirus/genetics , Gene Targeting/methods , Neuroglia/virology , Neurons/virology , Animals , Gene Transfer Techniques , Humans , Macaca fascicularis , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Retina/virology
20.
Hum Mutat ; 40(8): 1039-1045, 2019 08.
Article in English | MEDLINE | ID: mdl-30998843

ABSTRACT

Retinitis pigmentosa (RP) is the most common manifestation of inherited retinal diseases with high degree of genetic, allelic, and phenotypic heterogeneity. CEP250 encodes the C-Nap1 protein and has been associated with various retinal phenotypes. Here, we report the identification of a mutation (c.562C>T, p.R188*) in the CEP250 in a consanguineous family with nonsyndromic RP. To gain insights into the molecular pathomechanism underlying CEP250 defects and the functional relevance of CEP250 variants in humans, we conducted a functional characterization of CEP250 variant using a novel Cep250 knockin mouse line. Remarkably, the disruption of Cep250 resulted in severe impairment of retinal function and significant retinal morphological alterations. The homozygous knockin mice showed significantly reduced retinal thickness and ERG responses. This study not only broadens the spectrum of phenotypes associated with CEP250 mutations, but also, for the first time, elucidates the function of CEP250 in photoreceptors using a newly established animal model.


Subject(s)
Autoantigens/genetics , Autoantigens/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Exome Sequencing/methods , Polymorphism, Single Nucleotide , Retinitis Pigmentosa/genetics , Animals , Codon, Nonsense , Consanguinity , Disease Models, Animal , Female , Gene Knock-In Techniques , Humans , Mice , Pedigree , Phenotype , Retinitis Pigmentosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL