Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Exp Bot ; 73(7): 2125-2141, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34864987

ABSTRACT

Oxysterol-binding protein-related proteins (ORPs) are a conserved class of lipid transfer proteins that are closely involved in multiple cellular processes in eukaryotes, but their roles in plant-pathogen interactions are mostly unknown. We show that transient expression of ORPs of Magnaporthe oryzae (MoORPs) in Nicotiana benthamina plants triggered oxidative bursts and cell death; treatment of tobacco Bright Yellow-2 suspension cells with recombinant MoORPs elicited the production of reactive oxygen species. Despite ORPs being normally described as intracellular proteins, we detected MoORPs in fungal culture filtrates and intercellular fluids from barley plants infected with the fungus. More importantly, infiltration of Arabidopsis plants with recombinant Arabidopsis or fungal ORPs activated oxidative bursts, callose deposition, and PR1 gene expression, and enhanced plant disease resistance, implying that ORPs may function as endogenous and exogenous danger signals triggering plant innate immunity. Extracellular application of fungal ORPs exerted an opposite impact on salicylic acid and jasmonic acid/ethylene signaling pathways. Brassinosteroid Insensitive 1-associated Kinase 1 was dispensable for the ORP-activated defense. Besides, simultaneous knockout of MoORP1 and MoORP3 abolished fungal colony radial growth and conidiation, whereas double knockout of MoORP1 and MoORP2 compromised fungal virulence on barley and rice plants. These observations collectively highlight the multifaceted role of MoORPs in the modulation of plant innate immunity and promotion of fungal development and virulence in M. oryzae.


Subject(s)
Magnaporthe , Oryza , Oxysterols , Fungal Proteins/genetics , Magnaporthe/physiology , Oryza/metabolism , Oxysterols/metabolism , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Virulence
2.
New Phytol ; 232(4): 1808-1822, 2021 11.
Article in English | MEDLINE | ID: mdl-34403491

ABSTRACT

Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) constitute a superfamily of proteins toxic to dicot plants, but the molecular basis of this toxicity remains obscure. Using quantitative trait locus (QTL) analysis we investigated the genetic variation underlying ion leakage in Arabidopsis plants elicited with MoNLP1 derived from Magnaporthe oryzae. The QTL conditioning MoNLP1 toxicity was positionally cloned and further characterized to elucidate its mode of action. MoNLP1-triggered cell death varied significantly across > 250 Arabidopsis accessions and three QTLs were identified conferring the observed variation. The QTL on chromosome 4 was uncovered to encode a leucine-rich repeat (LRR)-only protein designated as NTCD4, which shares high sequence identity with a set of nucleotide-binding LRR proteins. NTCD4 was secreted into the apoplast and physically interacted with multiple NLPs. Apoplastic NTCD4 facilitated the oligomerization of NLP, which was closely associated with toxicity in planta. The natural genetic variation causing D3N change in NTCD4 reduced the secretion efficiency of NTCD4 and the infection of Botrytis cinerea on Arabidopsis plants. These observations demonstrate that the plant-derived NTCD4 is recruited by NLPs to promote toxicity via facilitating their oligomerization, which extends our understanding of a key step in the toxic mode of action of NLPs.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Ascomycota , Botrytis , Cell Death , Disease Susceptibility , Plant Diseases
3.
Huan Jing Ke Xue ; 41(12): 5600-5608, 2020 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-33374077

ABSTRACT

Red soil from Guangxi, China was selected as the background soil, and a porous biomorphic genetic composite of α-Fe2O3/Fe3O4/C comprising a bamboo template (PBGC-Fe/C) was used as a passivator to remediate As(Ⅴ) contaminated soils. The performance of PBGC-Fe/C was characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The results showed that PBGC-Fe/C could improve the passivation effect of As(Ⅴ) from the contaminated soils compared with a single passivation material. Under the conditions of a 5% dose addition, 25% water content, and particle size of 100 mesh, the stability rates of PBGC-Fe/C on As(Ⅴ) contaminated soils with different concentrations of 500 mg·kg-1 and 1000 mg·kg-1 could reach 80.95% and 73.49%, respectively. The porous biomorphic genetic composite of bamboo charcoal provided a large number of adsorption sites for As(Ⅴ), and the acidity of the soil was favorable for the remediation of As(Ⅴ) via passivation. Moreover, PBGC-Fe/C could not only adsorb and fix As(Ⅴ), but also promoted the stabilization of As species. Chemical complexation and ion exchange played major roles in this passivation process.

4.
Huan Jing Ke Xue ; 41(3): 1498-1504, 2020 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-32608654

ABSTRACT

The specific characteristics and mechanism of passivation of Pb in soil were studied using HAP/C composite (PBGC-HAP/C) as passivation, and using proportion of PBGC-HAP/C, particle size and type of passivator, soil moisture content, soil pH value of Pb, and particle size of the material as influencing factors. The results showed that with an increase in dosage of the passivator and passivation time, the passivation effect increases gradually. Reducing the particle size of the passivator is beneficial to improving the passivation effect. pH has a greater impact on passivation, with the passivation effect obviously rising with increased pH, and the passivation rate in an alkaline environment can reach above 99%. An increase in water content is beneficial to the improvement of the passivation effect, but the contribution is not significant. Through comparative analysis of the XPS, XRD, and FT-IR of materials before and after passivation, the results indicated that the passivation of PBGC-HAP/C to Pb is mainly through direct and indirect effects. Direct effects include physical adsorption, chemical complexation, electrostatic interaction, ion exchange, and precipitation; the indirect effect is mainly enhanced by increasing the pH value of the organic matter.

5.
Sci Rep ; 7(1): 4372, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28663588

ABSTRACT

The necrosis- and ethylene-inducing protein 1 (Nep1)-like proteins (NLPs) are a class of microbe-associated molecular patterns widely distributed across diverse groups of plant-associated microorganisms. In spite of the cytotoxic activity in dicot plants, the role of most NLPs in the virulence of plant pathogens is still largely unknown. We showed that the MoNLP family of rice blast fungus varied very little in amino acid sequence, transient expression of three MoNLPs induced cell death and the production of reactive oxygen species in Nicotiana benthamiana, and the expression of MoNLPs was induced during infection of susceptible rice plants. To further investigate the biological role of the MoNLP family, a marker-free gene replacement vector was developed and used to knock out the whole family in Magnaporthe oryzae. Results showed no significant difference in disease levels caused by wild type and the quadruple ΔMoNLP mutant strains. Likewise, the sporulation and radial growth of the two strains were similar under various unfavorable cultural conditions including malnutrition and abiotic stresses. These observations demonstrated that the MoNLP family is dispensable for the fungal tolerance to the tested adverse cultural conditions, and more importantly, for the virulence of blast fungus on susceptible rice plants.


Subject(s)
Disease Susceptibility , Fungal Proteins/genetics , Host-Pathogen Interactions , Magnaporthe/genetics , Oryza/microbiology , Plant Diseases/microbiology , Gene Knockout Techniques , Gene Order , Genetic Vectors/genetics , Multigene Family , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...