Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(9): 7704-7708, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29436813

ABSTRACT

We demonstrate hyperbolic metamaterials (HMMs) on a curved surface for an efficient outcoupling of nonradiative modes, which lead to an enhanced spontaneous emission. Those high-wavevector plasmonic modes can propagate along the curved structure and emit into the far field, realizing a directional light emission with maximal fluorescent intensity. Detailed simulations disclose a high Purcell factor and a spatial power distribution in the curved HMM, which agrees with the experimental result. Our work presents remarkable enhancing capability in both the Purcell factor and emission intensity, which could suggest a unique structure design in metamaterials for potential application in, e.g., high-speed optical sensing and communications.

2.
Adv Mater ; 29(13)2017 Apr.
Article in English | MEDLINE | ID: mdl-28165163

ABSTRACT

Nanocrystalline diamond nanomembranes with thinning-reduced flexural rigidities can be shaped into various 3D mesostructures, such as tubes, jagged ribbons, nested tubes, helices, and nested rings. Microscale helical diamond architectures are formed by controlled debonding in agreement with finite-element simulation results. Rolled-up diamond tubular microcavities exhibit pronounced defect-related photoluminescence with whispering-gallery-mode resonance.

3.
Lab Chip ; 16(22): 4406-4414, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27752686

ABSTRACT

Miniaturization of functional devices and systems demands new design and fabrication approaches for lab-on-a-chip application and optical integrative systems. By using a direct laser writing (DLW) technique based on two-photon polymerization (TPP), a highly integrative optofluidic refractometer is fabricated and demonstrated based on tubular optical microcavities coupled with waveguides. Such tubular devices can support high quality factor (Q-factor) up to 3600 via fiber taper coupling. Microtubes with various diameters and wall thicknesses are constructed with optimized writing direction and conditions. Under a liquid-in-tube sensing configuration, a maximal sensitivity of 390 nm per refractive index unit (RIU) is achieved with subwavelength wall thickness (0.5 µm), which offers a detection limit of the devices in the order of 10-5 RIU. Such tubular microcavities with coupled waveguides underneath present excellent optofluidic sensing performance, which proves that TPP technology can integrate more functions or devices on a chip in one-step formation.

4.
Nanoscale ; 8(17): 9141-5, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27092767

ABSTRACT

We design and fabricate a simple self-powered system to collect analyte molecules in fluids for surface-enhanced Raman scattering (SERS) detection. The system is based on catalytic Au/SiO/Ti/Ag-layered microengines by employing rolled-up nanotechnology. Pronounced SERS signals are observed on microengines with more carrier molecules compared with the same structure without automatic motions.

5.
Lab Chip ; 16(1): 182-7, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26605851

ABSTRACT

Optical microcavities enable circulated light to intensively interact with a detecting liquid, thus promising high sensitivity in fluidic refractometers. Based on Mie scattering theory, we propose a tubular metamaterial device for liquid sensing, which utilizes anisotropic metamaterials with hyperbolic dispersion called indefinite media (IM). Besides traditional whispering gallery modes (WGMs), such tubular cavities can support surface plasmon polariton (SPP) WGMs, enabling high sensitivity liquid detection. Three configurations of such metamaterial tubes for sensing are discussed: tube-in-liquid, hollow-tube-in-liquid and liquid-in-tube; these are analyzed using numerical formulas and compared with dielectric and metal materials. Compared with traditional dielectric media (DM), the IM tubular cavity exhibits a higher sensitivity (S), which is close to that of a metal tubular cavity. However, compared with metal media, such an IM cavity can achieve higher quality (Q) factors similar to the DM tubular cavity. Therefore, the IM tubular cavity can offer the highest figures of merit (QS) for the sensing performance among the three types of materials. Our results suggest a novel tubular optofluidic device based on metamaterials, which could be useful for liquid refractometers.


Subject(s)
Microfluidic Analytical Techniques , Optical Devices , Refractometry , Microfluidic Analytical Techniques/instrumentation , Refractometry/instrumentation
6.
Sci Rep ; 5: 15012, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26443526

ABSTRACT

The synergy effect in nature could enable fantastic improvement of functional properties and associated effects. The detection performance of surface-enhanced Raman scattering (SERS) can be highly strengthened under the cooperation with other factors. Here, greatly-enhanced SERS detection is realized based on rolled-up tubular nano-resonators decorated with silver nanoparticles. The synergy effect between whispering-gallery-mode (WGM) and surface plasmon leads to an extra enhancement at the order of 10(5) compared to non-resonant flat SERS substrates, which can be well tuned by altering the diameter of micron- and nanotubes and the excitation laser wavelengths. Such synchronous and coherent coupling between plasmonics and photonics could lead to new principle and design for various sub-wavelength optical devices, e.g. plasmonic waveguides and hyperbolic metamaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...