Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Aging (Albany NY) ; 13(11): 15078-15099, 2021 05 29.
Article in English | MEDLINE | ID: mdl-34051074

ABSTRACT

Depression is a complex neuropsychiatric disease involved multiple targets and signaling pathways. Systems pharmacology studies could potentially present a comprehensive molecular mechanism to delineate the anti-depressant effect of emodin (EMO). In this study, we investigated the anti-depressant effects of EMO in the chronic unpredictable mild stress (CUMS) rat model of depression and gained insights into the underlying mechanisms using systems pharmacology and molecular simulation analysis. Forty-three potential targets of EMO for treatment of depression were obtained. GO biological process analysis suggested that the biological functions of these targets mainly involve the regulation of reactive oxygen species metabolic process, response to lipopolysaccharide, regulation of inflammatory response, etc. KEGG pathway enrichment analysis showed that the PI3K-Akt signaling pathway, insulin resistance, IL-17 signaling pathway were the most significantly enriched signaling pathways. The molecular docking analysis revealed that EMO might have a strong combination with ESR1, AKT1 and GSK3B. Immunohistochemical staining and Western blotting showed that 2 weeks' EMO treatment (80 mg/kg/day) reduced depression related microglial activation, neuroinflammation and altered PI3K-Akt signaling pathway. Our findings provide a systemic pharmacology basis for the anti-depressant effects of EMO.


Subject(s)
Antidepressive Agents/pharmacology , Emodin/pharmacology , Animals , Antidepressive Agents/therapeutic use , Behavior, Animal , Depression/complications , Depression/drug therapy , Emodin/chemistry , Emodin/therapeutic use , Gene Ontology , Genome , Inflammation/pathology , Male , Microglia/pathology , Molecular Docking Simulation , Neurons/metabolism , Neurons/pathology , Phosphatidylinositol 3-Kinases/metabolism , Prefrontal Cortex/pathology , Protein Interaction Mapping , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Reproducibility of Results , Signal Transduction , Stress, Psychological/complications , Stress, Psychological/drug therapy
2.
J Neurochem ; 158(2): 119-137, 2021 07.
Article in English | MEDLINE | ID: mdl-33930186

ABSTRACT

Long-term or severe lack of protective factors is important in the pathogenesis of neurodegenerative dementia. Progranulin (PGRN), a neurotrophic factor expressed mainly in neurons and microglia, has various neuroprotective effects such as anti-inflammatory effects, promoting neuron survival and neurite growth, and participating in normal lysosomal function. Mutations in the PGRN gene (GRN) have been found in several neurodegenerative dementias, including frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Herein, PGRN deficiency and PGRN hydrolytic products (GRNs) in the pathological changes related to dementia, including aggregation of tau and TAR DNA-binding protein 43 (TDP-43), amyloid-ß (Aß) overproduction, neuroinflammation, lysosomal dysfunction, neuronal death, and synaptic deficit have been summarized. Furthermore, as some therapeutic strategies targeting PGRN have been developed in various models, we highlighted PGRN as a potential anti-neurodegeneration target in dementia.


Subject(s)
Dementia/genetics , Neurodegenerative Diseases/genetics , Progranulins/genetics , Alzheimer Disease/genetics , Animals , Frontotemporal Lobar Degeneration/genetics , Humans
3.
J Cell Mol Med ; 24(12): 6928-6942, 2020 06.
Article in English | MEDLINE | ID: mdl-32364678

ABSTRACT

Acidosis, a common feature of cerebral ischaemia and hypoxia, plays a key role in these pathological processes by aggravating the ischaemic and hypoxic injuries. To explore the mechanisms, in this research, we cultured primary neurons in an acidic environment (potential of hydrogen [pH]6.2, 24 hours) to mimic the acidosis. By proteomic analysis, 69 differentially expressed proteins in the acidic neurons were found, mainly related to stress and cell death, synaptic plasticity and gene transcription. And, the acidotic neurons developed obvious alterations including increased neuronal death, reduced dendritic length and complexity, reduced synaptic proteins, tau hyperphosphorylation, endoplasmic reticulum (ER) stress activation, abnormal lysosome-related signals, imbalanced oxidative stress/anti-oxidative stress and decreased Golgi matrix proteins. Then, melatonin (1 × 10-4  mol/L) was used to pre-treat the cultured primary neurons before acidic treatment (pH6.2). The results showed that melatonin partially reversed the acidosis-induced neuronal death, abnormal dendritic complexity, reductions of synaptic proteins, tau hyperphosphorylation and imbalance of kinase/phosphatase. In addition, acidosis related the activations of glycogen synthase kinase-3ß and nuclear factor-κB signals, ER stress and Golgi stress, and the abnormal autophagy-lysosome signals were completely reversed by melatonin. These data indicate that melatonin is beneficial for neurons against acidosis-induced injuries.


Subject(s)
Acidosis/pathology , Melatonin/pharmacology , Neurons/pathology , Protective Agents/pharmacology , Animals , Apoptosis/drug effects , Dendrites/drug effects , Dendrites/metabolism , Extracellular Space/metabolism , Female , Hydrogen-Ion Concentration , Neurons/drug effects , Organelles/drug effects , Organelles/metabolism , Phosphorylation/drug effects , Rats, Sprague-Dawley , Stress, Physiological/drug effects , Synapses/drug effects , Synapses/pathology , tau Proteins/metabolism
4.
Int J Neuropsychopharmacol ; 22(1): 57-70, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30407508

ABSTRACT

Background: Hyperhomocysteinemia is an independent risk factor for dementia, including Alzheimer's disease. Lowering homocysteine levels with folic acid treatment with or without vitamin B12 has shown few clinical benefits on cognition. Methods: To verify the effect of emodin, a naturally active compound from Rheum officinale, on hyperhomocysteinemia-induced dementia, rats were treated with homocysteine injection (HCY, 400 µg/kg/d, 2 weeks) via vena caudalis. Afterwards, HCY rats with cognitive deficits were administered intragastric emodin at different concentrations for 2 weeks: 0 (HCY-E0), 20 (HCY-E20), 40 (HCY-E40), and 80 mg/kg/d (HCY-E80). Results: ß-Amyloid overproduction, tau hyperphosphorylation, and losses of neuron and synaptic proteins were detected in the hippocampi of HCY-E0 rats with cognitive deficits. HCY-E40 and HCY-E80 rats had better behavioral performance. Although it did not reduce the plasma homocysteine level, emodin (especially 80 mg/kg/d) reduced the levels of ß-amyloid and tau phosphorylation, decreased the levels of ß-site amyloid precursor protein-cleaving enzyme 1, and improved the activity of protein phosphatase 2A. In the hippocampi of HCY-E40 and HCY-E80 rats, the neuron numbers, levels of synaptic proteins, and phosphorylation of the cAMP responsive element-binding protein at Ser133 were increased. In addition, depressed microglial activation and reduced levels of 5-lipoxygenase, interleukin-6, and tumor necrosis factor α were also observed. Lastly, hyperhomocysteinemia-induced microangiopathic alterations, oxidative stress, and elevated DNA methyltransferases 1 and 3ß were rescued by emodin. Conclusions: Emodin represents a novel potential candidate agent for hyperhomocysteinemia-induced dementia and Alzheimer's disease-like features.


Subject(s)
Dementia/drug therapy , Dementia/etiology , Emodin/pharmacology , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/drug therapy , Nootropic Agents/pharmacology , Amyloid beta-Peptides/metabolism , Animals , Cognition Disorders/drug therapy , Cognition Disorders/etiology , Cognition Disorders/metabolism , Cognition Disorders/pathology , DNA Methylation/drug effects , DNA Methylation/physiology , Dementia/metabolism , Dementia/pathology , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Hyperhomocysteinemia/metabolism , Hyperhomocysteinemia/pathology , Male , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Microvessels/drug effects , Microvessels/metabolism , Microvessels/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Random Allocation , Rats, Sprague-Dawley , tau Proteins/metabolism
5.
J Neurochem ; 146(6): 703-721, 2018 09.
Article in English | MEDLINE | ID: mdl-29939407

ABSTRACT

Menopause, a risk factor for brain dysfunction in women, is characterized by neuropsychological symptoms including depression and dementia, which are closely related to alterations in different brain regions after menopause. However, little is known about the variability in pathophysiologic changes associated with menopause in the brain. Here, we observed that menopause in rats induced by bilateral ovariectomy (OVX) showed depressive and dementia-related behaviors along with neuronal loss in the prefrontal cortex (PFC), hippocampus (HIP), hypothalamus (HYP), and amygdala (AMY) by Nissl staining. Meanwhile, by immunohistochemical staining, increased microglia in the HIP and AMY and increased astrocytes in the PFC, HYP, and AMY were shown. Using quantitative proteomics, we identified 146 differentially expressed proteins in the brains of OVX rats, for example, 20 in the PFC, 41 in the HIP, 17 in the HYP, and 79 in the AMY, and performed further detection by western blotting. A link between neuronal loss and apoptosis was suggested, as evidenced by increases in adenylate kinase 2 (AK2), B-cell lymphoma 2 associated X (Bax), cleaved caspase 3, and phosphorylated p53 and decreases in Huntingtin-interacting protein K, hexokinase, and phosphorylated B-cell lymphoma 2 (Bcl-2), and apoptosis might be triggered by endoplasmic reticulum stress (probed by increased glucose-regulated protein 78 (GRP78), cleaved caspase 12, phosphorylated protein kinase R (PKR)-like endoplasmic reticulum kinase, inositol-requiring enzyme-1 and activating transcription factor 6), and mitochondrial dysfunction (probed by increased cytochrome c and cleaved caspase 3 and decreased sideroflexin-1 (SFXN1) and NADH dehydrogenase (ubiquinone) 1 α subcomplex 11 (NDUFA11)). Activation of autophagy was also indicated by increased autophagy-related 7, γ-aminobutyric acid (GABA) receptor-associated protein-like 2, and oxysterol-binding protein-related protein 1 and confirmed by increased microtubule-associated protein light chain 3 (LC3II/I), autophagy-related 5, and Beclin1 in the HIP and AMY. In the AMY, which is important in emotion, higher GABA transporter 3 and lower vesicular glutamate transporter 1 levels indicated an imbalance between excitatory and inhibitory neurotransmission, and the increased calretinin and decreased calbindin levels suggested an adjustment of GABAergic transmission after OVX. In addition, cytoskeletal abnormalities including tau hyperphosphorylation, dysregulated Ca²+ signals, and glutamic synaptic impairments were observed in the brains of OVX rats. Collectively, our study showed the changes in different brain regions related to depression and dementia during menopause.


Subject(s)
Brain/metabolism , Dementia/etiology , Dementia/pathology , Depression/etiology , Depression/pathology , Ovariectomy/adverse effects , Animals , Autophagy/physiology , Calcium-Binding Proteins/metabolism , Cytoskeleton/pathology , Disease Models, Animal , Estradiol/blood , Female , Gene Expression Regulation/physiology , Heat-Shock Proteins/metabolism , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Proteomics , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology , Time Factors
6.
J Alzheimers Dis ; 63(3): 911-926, 2018.
Article in English | MEDLINE | ID: mdl-29710712

ABSTRACT

Alzheimer's disease (AD) underlies dementia for millions of people worldwide with no effective treatment. The dementia of AD is thought stem from the impairments of the synapses because of their critical roles in cognition. Melatonin is a neurohormone mainly released by the pineal gland in a circadian manner and it regulates brain functions in various manners. It is reported that both the melatonin deficit and synaptic impairments are present in the very early stage of AD and strongly contribute to the progress of AD. In the mammalian brains, the effects of melatonin are mainly relayed by two of its receptors, melatonin receptor type 1a (MT1) and 1b (MT2). To have a clear idea on the roles of melatonin in synaptic impairments of AD, this review discussed the actions of melatonin and its receptors in the stabilization of synapses, modulation of long-term potentiation, as well as their contributions in the transmissions of glutamatergic, GABAergic and dopaminergic synapses, which are the three main types of synapses relevant to the synaptic strength. The synaptic protective roles of melatonin in AD treatment were also summarized. Regarding its protective roles against amyloid-ß neurotoxicity, tau hyperphosphorylation, oxygenation, inflammation as well as synaptic dysfunctions, melatonin may be an ideal therapeutic agent against AD at early stage.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Melatonin/metabolism , Synapses/metabolism , Synapses/pathology , Alzheimer Disease/metabolism , Humans , Receptors, Melatonin/metabolism
7.
Mol Neurobiol ; 55(1): 835-850, 2018 01.
Article in English | MEDLINE | ID: mdl-28064424

ABSTRACT

Clinical data have shown women are more susceptible to depression. This study was performed to identify differentially regulated proteins from hippocampus in chronic unpredicted mild stress (CUMS)-exposed male and female young rats. After 7 weeks of CUMS, depressed male (M-D) and female rats (F-D) and unstressed male (M-C) and female controls (F-C) were studied. By proteomics analysis, 74 differential proteins in F-C/M-C, 79 in F-D/M-D, 77 in F-D/F-C, and 32 in M-D/M-C were found. Further, the synapse-related proteins, cytoskeleton protein tau, and stress-related kinases in hippocampus were assayed by Western blotting. F-C rats were found to have lower levels of metabotropic glutamate receptor 1 (mGluR1) and mGluR2 and higher levels of N-methyl-D-aspartate receptor 2B (NR2B), synapsin1, total tau, and dephosphorylated tau than M-C rats. Both F-D and M-D rats had lower levels of glutamate transporter SLC1α2, mGluR1, and mGluR2, and higher levels of total tau and phosphorylated tau than their controls. Compared with their controls, M-D rats had lower NR1 and higher NR2B, and F-D rats had lower NR2A, NR2B, PSD95, and synapsin1. F-C rats had higher JNK and lower phosphorylation levels of ERK at Thr202/Thr204, JNK at Thr183/Thr185, and GSK-3ß at Ser9 than M-C ones. Both M-D and F-D rats had decreased phosphorylation of ERK at Thr202/Thr204 and GSK-3ß at Ser9, and increased JNK phosphorylation at Thr183/Thr185 compared with their controls. All these data illustrate the biochemical complexity behind the genders, and may also aid in the development of more accurate treatment strategies for depression.


Subject(s)
Hippocampus/metabolism , Proteomics , Sex Characteristics , Stress, Psychological/metabolism , Animals , Behavior, Animal , Chronic Disease , Cytoskeleton/metabolism , Depression/metabolism , Female , Gene Ontology , Male , Mitogen-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Synapses/metabolism , tau Proteins/metabolism
8.
Int J Mol Sci ; 17(7)2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27455236

ABSTRACT

As current efforts have limited effects on the clinical outcome of intracerebral hemorrhage (ICH), the mechanisms including microglia/macrophages that involved inflammation need further investigation. Here, 0.4 units of collagenase VII were injected into the left caudate putamen (CPu) to duplicate ICH rat models. In the brains of ICH rats, microglia/macrophages, the nearest cells to the hemorrhagic center, were observed as ameboid and Prussian-blue positive. Furthermore, the ameboid microglia/macrophages were differentiation (CD) 68 and interleukin-1ß (IL-1ß) positive, and neither CD206 nor chitinase3-like 3 (Ym1) positive, suggesting their strong abilities of phagocytosis and secretion of IL-1ß. According to the distance to the hemorrhagic center, we selected four areas-I, II, III, and IV-to analyze the morphology of microglia/macrophages. The processes decreased successively from region I to region IV. Microglia/macrophages in region IV had no processes. The processes in region I were radially distributed, however, they showed obvious directivity towards the hemorrhagic center in regions II and III. Region III had the largest density of compactly arrayed microglia/macrophages. All these in vivo results present the high morphologic plasticity of microglia/macrophages and their functions in the pathogenesis of ICHs.


Subject(s)
Cerebral Hemorrhage/physiopathology , Macrophages/pathology , Microglia/pathology , Neuronal Plasticity/physiology , Animals , Behavior, Animal , Cerebral Hemorrhage/complications , Fluorescent Antibody Technique , Immunohistochemistry , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley
9.
Chin J Integr Med ; 20(1): 43-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-22903440

ABSTRACT

OBJECTIVE: To explore the diaphragmatic toxicity in doxorubicin (DOX)-treated rats and the related mechanisms, as well as the effects of Shengmai Injection (SMI, ) on the diaphragmatic dysfunction. METHODS: Thirty Sprague-Dawley male rats were randomly divided into three groups: control, DOX-treated and DOX+SMI treated groups. DOX was given to rats in DOX and DOX+SMI groups in 6 equal doses [2.5 mg/kg, intraperitoneal injection (i.p.)], on alternate days, over a period of 2 weeks for a cumulative dose of 15 mg/kg. SMI was given to DOX+SMI rats in 12 doses (3 mL/kg, i.p.) for a period of 2 weeks before the administration of DOX and 2 weeks during the administration of DOX. The rats in the control group received equal volume of normal saline. Subsequently, the twitch and tetanic characteristics and force-frequency relationships, and the malondialdehyde (MDA) levels and the superoxide dismutase (SOD) activities, as well as the mRNA content and proteins of inducible nitric oxide synthase (iNOS) were determined. RESULTS: The DOX-treated rats had decreased the peak twitch tension (Pt), maximal tetanic tension (P0) and force-frequency relationship as compared with the control rats (P<0.01), while the diaphragm contractility in rats treated with SMI were significantly higher than that in DOX-treated rats (P<0.01). The DOX-treated rats had increased MAD levels and decreased SOD activities (P<0.05), and SMI decreased the MDA levels and increased the SOD activities in DOX-treated rats (P<0.05). Ultrastructure of diaphragm in the DOX-treated rats revealed typical alterations including fracture of diaphragm fibers, and edema and degeneration of mitochondria; these changes were relieved by SMI treatment. The mRNA content and protein of iNOS in DOX-treated rats were remarkably higher than those in control rats (P<0.01), while SMI decreased the mRNA expression level of iNOS in DOX-treated rats (P<0.05). CONCLUSIONS: Lipid peroxidation is responsible for DOX-induced diaphragm toxicity. SMI protects diaphragm muscles and their function from DOX impairment, and these beneficial effects may be somehow correlated with the decrease in expression of iNOS and lipid peroxidation.


Subject(s)
Diaphragm/drug effects , Diaphragm/physiology , Doxorubicin/adverse effects , Drugs, Chinese Herbal/pharmacology , Muscle Contraction/drug effects , Animals , Biomechanical Phenomena/drug effects , Blotting, Western , Diaphragm/pathology , Diaphragm/ultrastructure , Drug Combinations , Gene Expression Regulation/drug effects , In Vitro Techniques , Injections , Male , Malondialdehyde/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
10.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 29(3): 209-12, 2013 May.
Article in Chinese | MEDLINE | ID: mdl-23940949

ABSTRACT

OBJECTIVE: To study the changes of inducible nitric oxide synthase (iNOS) activity and apoptosis-related genes Bcl-2, Bax and caspase-3 mRNA expressions in endotoxemia-induced rat diaphragm injury and analyze the related apoptosis mechanism. METHODS: Thirty-two male SD rats were randomly divided into 4 groups (n = 8): control group (saline 0.5 ml ip), endotoxin 24 h, 48 h and 96 h group (endotoxin 12 mg/kg ip, animals were killed either 24, 48 or 96 h after injections). Body weight were measured, the ratio between diaphragm weight and body weight, activities of constitutive nitric oxide syntheses (cNOS), iNOS and succinate dehydrogenase (SDH) were also measured. The expressions of Bcl-2, Bax and caspase-3 mRNA were detected by RT-PCR analysis. RESULTS: Endotoxin induced significant reductions in diaphragm mass in endotoxin 96 h group (P < 0.05). Endotoxin increased diaphragm cNOS or iNOS activities, and they were significantly higher in endotoxin 96 h group than those in endotoxin 24 h and 48 h groups, diaphragm SDH activity was reduced, and it was lower in endotoxin 96 h group than that in endotoxin 24 h and 48 h groups (P < 0.01). Endotoxin significantly increased Bax and caspase-3 mRNA expressions, and they were higher in endotoxin 48 h and 96 h groups than those in endotoxin 24 h group (P < 0.01). Endotoxin significantly reduced Bcl-2 mRNA expression and the ratio of Bcl-2/Bax, and they were lower in endotoxin 48 h and 96 h groups than those in endotoxin 24 h group (P < 0.01). CONCLUSION: iNOS is activated in endotoxemia-induced rat diaphragm injury. It damages mitochondria, upregulates Bax expression and downregulates Bcl-2 expression, then induces caspase-3 related apoptotic pathway. These changes may cause diaphragm injury and atrophy.


Subject(s)
Apoptosis , Diaphragm/metabolism , Endotoxemia/metabolism , Nitric Oxide Synthase Type II/metabolism , Animals , Caspase 3/metabolism , Diaphragm/physiopathology , Gene Expression , Male , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...