Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Immunobiology ; 228(5): 152726, 2023 09.
Article in English | MEDLINE | ID: mdl-37591179

ABSTRACT

With the recent advancement in omics and molecular techniques, a wealth of new molecular biomarkers have become available for the diagnosis and classification of primary Sjögren's syndrome (pSS) patients. However, whether these biomarkers are universal is of great interest to us. In this study, we used various methods to obtain shared biomarkers derived from multiple tissue in pSS patients and to explore their relationship with immune microenvironment alterations. First we identified differentially expressed genes (DEGs) between pSS and healthy controls utilizing nine mRNA microarray datasets obtained from the Gene Expression Omnibus (GEO). Then, shared biomarkers were filtered out using robust rank aggregation (RRA), data integration analysis, weighted gene co-expression network analysis (WGCNA), and least absolute selection and shrinkage operator (LASSO) regression; their roles in pSS and association with changes in the immune microenvironment were also analyzed. In addition, these biomarkers were further confirmed with both the testing set and immunohistochemistry (IHC). As a result, ten biomarkers, i.e., EPSTI1, IFI44, IFIT1, IFIT2, IFIT3, MX1, OAS1, PARP9, SAMD9L and TRIM22, were identified. Receiver operating characteristic (ROC) curves showed that the ten genes could discriminate pSS from controls. Gene set enrichment analysis (GSEA) showed that the enrichment of immune-related gene sets was significant in pSS patients with high expression of either biomarker. Furthermore, the association between some immunocytes and these biomarkers was identified. In the two distinct molecular patterns of pSS patients based on the expressions of these biomarkers, the proportions of immunocytes were significantly different. Our study identified shared biomarkers of multi-tissue origin and revealed their relationship with altered immune microenvironment in pSS patients. These markers not only have diagnostic implications but also provide potential immunotherapeutic targets for the clinical treatment of pSS patients.


Subject(s)
Sjogren's Syndrome , Humans , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/genetics , Transcription Factors , Biomarkers , Gene Expression Profiling , RNA, Messenger
2.
Mol Genet Genomics ; 298(1): 95-105, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36318338

ABSTRACT

Genetic susceptibility is an essential pathogenetic mechanism in autoimmune thyroid disease (AITD). MBL2 gene polymorphisms have been shown to play a vital role in the pathogenesis of multiple autoimmune disorders, but its contribution to AITD is unclear. The aim of this study was to assess the linkage between MBL2 gene polymorphisms and AITD susceptibility in a Chinese Han population. One thousand seven hundred sixty seven subjects consisting of 965 AITD patients and 802 controls from a Chinese Han population were enrolled in the case-control study. Four common single-nucleotide polymorphisms (SNPs) in the MBL2 gene were tested using high-throughput sequencing technology for sequence-based SNP genotyping. The allele and genotype distribution results showed that the minor alleles of rs198266, rs10824793, and rs4935046 were significantly lower in Hashimoto's thyroiditis (HT) patients than in healthy controls. In further genetic model analysis, the dominant models of rs1982266, rs10824793, and rs4935046 for MBL2 in the AITD group exhibited a lower risk of morbidity. Finally, we discovered that haplotype AAGC was associated with Graves' disease (GD), while AGC was associated with HT. Our study provides strong evidence for a genetic correlation between MBL2 and AITD, and the polymorphism of the MBL2 gene may be a protective factor for AITD, especially for HT. These findings can advance our understanding of the etiology of AITD, as well as provide guidance for prevention and intervention toward AITD.


Subject(s)
Autoimmune Diseases , Graves Disease , Hashimoto Disease , Mannose-Binding Lectin , Humans , Protective Factors , Case-Control Studies , Hashimoto Disease/genetics , Autoimmune Diseases/genetics , Graves Disease/genetics , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Gene Frequency , Mannose-Binding Lectin/genetics
3.
Biomolecules ; 12(12)2022 12 18.
Article in English | MEDLINE | ID: mdl-36551327

ABSTRACT

GPR15 plays an important role in lymphocyte homing and is a key immune molecule to maintain organ immune homeostasis. Yet, no study on the association between GPR15 and Graves' disease (GD) is available. In this study, we systematically investigated the expression of GPR15 in different types of immune cells and different tissues of GD patients. We found that the expressions of GPR15 and GPR15L in peripheral blood of GD patients were increased compared with those in healthy controls. A flow cytometry analysis showed that GPR15 positive cells were mainly CD14+ monocytes and CD56+ natural killer cells (NK cells) of innate immunity, T helper cells and cytotoxic T cells of adaptive immunity. We also found that the expressions of GPR15 and GPR15L in the PBMC of GD patients were positively correlated with the Tfh-specific cytokines IL21 and IL4. In addition, immunohistochemistry showed that the level of GPR15 in thyroid tissue of GD patients was higher than that of the control group. Our results demonstrate for the first time that GPR15 is highly expressed in various immune cells in GD patients, suggesting that GPR15-GPR15L is associated with the activation and infiltration of proinflammatory immune cells in the thyroid tissue of GD patients.


Subject(s)
Graves Disease , Leukocytes, Mononuclear , Humans , Leukocytes, Mononuclear/metabolism , Graves Disease/metabolism , T-Lymphocytes, Helper-Inducer , Killer Cells, Natural , Receptors, Peptide , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
4.
J Immunol Res ; 2022: 7455494, 2022.
Article in English | MEDLINE | ID: mdl-36398316

ABSTRACT

Objective: Hashimoto's thyroiditis (HT) is one of the most common clinical autoimmune diseases. Recent studies have found that HT pathogenesis is associated with macrophage polarization. Saikosaponin-d (SSd) is an active component in the Chinese medicine Bupleurum, which has anti-inflammatory and immunomodulatory effects. The purpose of this study was to verify the therapeutic effect of SSd on HT and to investigate the regulatory effect of SSd on macrophage polarization in HT. Methods: Network pharmacology analysis was used to predict the relevant targets and signaling pathways of SSd for HT treatment. The therapeutic effect of SSd on HT model mice and the effect on macrophage polarization were detected by animal experiment. Results: Network pharmacological analysis showed that SSd can alleviate HT against multiple targets such as IL-6 and IL-10 and can act on macrophage polarization-related signaling pathways such as MAPK and JAK-STAT signaling pathways. Animal experiments showed that SSd intervention attenuated the lymphocytic infiltration in thyroid tissues of HT mice (P = 0.044); SSd intervention reduced serum TPOAb antibody level in HT mice (P < 0.001); SSd adjusted M1/M2 imbalance towards M2-type macrophage polarization in the spleen of HT mice (P = 0.003); SSd inhibited the expressions of Th1-type cytokine IFN-γ and Th17-type cytokine IL-17 systemically and locally in the thyroid of HT mice (P < 0.05). Conclusion: SSd treatment can regulate Th1/Th2 and Th17/Treg imbalances and reduce the severity of HT in mice by promoting the polarization of M2 macrophages.


Subject(s)
Hashimoto Disease , Oleanolic Acid , Mice , Animals , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Hashimoto Disease/drug therapy , Cytokines/metabolism , Macrophages
5.
Biomed Res Int ; 2022: 6839634, 2022.
Article in English | MEDLINE | ID: mdl-36132072

ABSTRACT

Background: Autoimmune thyroid disease (AITD), one of the most prevalent organ-specific autoimmune diseases, mainly includes Graves' disease (GD) and Hashimoto's thyroiditis (HT). This study was aimed at researching the association between AITD and single nucleotide polymorphisms (SNPs) of the HLA-DRA gene. Methods: Using Hi-SNP high-throughput sequencing technology, we detected the distribution of three SNPs (rs3177928, rs7197, and rs3129878) of HLA-DRA genotypes in 1033 AITD patients (634 GD and 399 HT ones) and 791 healthy volunteers in Chinese Han Population. Chi-square test, multivariate logistic regression, and haplotype analysis were performed by SPSS and Haploview software to analyze the relationship between HLA-DRA gene polymorphisms and AITD. Results: The results show that allele frequency and genotype distribution of rs3177928 and rs7197 were correlated with AITD and GD compared with the healthy control group, but not with HT. Rs3177928 and rs7197 were correlated with AITD and HT in the allele model, dominant model, and overdominant model before and after gender and age adjustment, but not with HT. In addition, we found that two loci (rs3177928 and rs7197) constituted a linkage disequilibrium (LD) region, and haplotype AA was associated with AITD and GD. However, we found no association between rs3129878 and AITD. Conclusion: Our study is the first to find that rs3177928 and rs7197 of HLA-DRA are significantly correlated with AITD and GD in the Chinese Han population. This will help further reveal the pathogenesis of AITD and provide new candidate genes for the prediction or treatment of AITD.


Subject(s)
Graves Disease , Hashimoto Disease , Case-Control Studies , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genotype , Graves Disease/genetics , HLA-DR alpha-Chains/genetics , Hashimoto Disease/genetics , Humans , Polymorphism, Single Nucleotide/genetics
6.
Int J Endocrinol ; 2022: 7300796, 2022.
Article in English | MEDLINE | ID: mdl-35983018

ABSTRACT

Purpose: Recent studies have shown that Ankyrin Repeat Domain 55 (ANKRD55) gene polymorphism is a risk factor for multiple autoimmune diseases, but its association with autoimmune thyroid diseases (AITDs) has not been reported. The purpose of this study was to investigate the potential relationship between polymorphism of the ANKRD55 gene and AITDs. Methods: For this study, we enrolled 2050 subjects, consisting of 1220 patients with AITD and 830 healthy subjects. Five loci (rs321776, rs191205, rs7731626, rs415407, and rs159572) of the ANKRD55 gene were genotyped using Multiplex PCR combined with high-throughput sequencing. Results: The results showed that the allele frequencies of rs7731626 and rs159572 loci in HT patients were lower than those in normal controls (P=0.048 and P=0.03, respectively). In different genetic model analyses, rs7731626 and rs159572 were also significantly correlated with HT in allele, dominant and additive models before and after age and sex adjustment. There were no differences in rs321776, rs191205, or rs415407 of the ANKRD55 gene in allele frequency or genotype frequency between AITDs patients and controls. Conclusions: This study for the first time found that rs7731626 and rs159572 of ANKRD55 were significantly correlated with HT, and individuals carrying the A allele at these two loci had a lower probability of developing HT.

SELECTION OF CITATIONS
SEARCH DETAIL
...