Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 511: 84-91, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38648924

ABSTRACT

We established a normal embryonic development table for the Anji salamander Hynobius amjiensis, a critically endangered tailed amphibian of the family Hynobiidae with a very limited distribution in East China, following the standards set by the early developmental table of vertebrates. Put together 32 embryonic stages for the Anji salamander was defined. The total embryonic period from oviposition to hatching is approximately 30 days at 9 °C. Stages 1-16 represent early development from cleavage to neurulation. Stages 17-32 represent organogenesis documenting later developmental events such as tail, gill, and limb formation, and hatching (Stage 32). We provided a detailed description of the external morphology and color changes of the head, trunk, limbs, tail, external gills, and balancers at various stages from egg-laying to hatching. We also described several cases of abnormal embryonic development. The establishment of the embryonic development table in H. amjiensis contributes to better understanding of the ontogeny in tailed amphibians, distinguishing closely related species, and identifying abnormal embryonic amphibians.


Subject(s)
Embryo, Nonmammalian , Embryonic Development , Urodela , Animals , Urodela/embryology , Embryonic Development/physiology , Embryo, Nonmammalian/embryology , Female , Organogenesis/physiology , Tail/embryology , China
2.
Front Psychol ; 14: 1143062, 2023.
Article in English | MEDLINE | ID: mdl-37151349

ABSTRACT

Introduction: A hallmark of the human language faculty is processing complex hierarchical syntactic structures across languages. However, for Mandarin Chinese, a language typically dependent on semantic combinations and free of morphosyntactic information, the relationship between syntactic and semantic processing during Chinese complex sentence reading is unclear. From the neuropsychological perspective of bilingual studies, whether second language (L2) learners can develop a consistent pattern of target language (i.e., L2) comprehension regarding the interplay of syntactic and semantic processing, especially when their first language (L1) and L2 are typologically distinct, remains to be determined. In this study, Chinese complex sentences with center-embedded relative clauses were generated. By utilizing the high-time-resolution technique of event-related potentials (ERPs), this study aimed to investigate the processing relationships between syntactic and semantic information during Chinese complex sentence reading in both Chinese L1 speakers and highly proficient L2 learners from South Korea. Methods: Normal, semantically violated (SEM), and double-violated (containing both semantic and syntactic violations, SEM + SYN) conditions were set with regard to the nonadjacent dependencies of the Chinese complex sentence, and participants were required to judge whether the sentences they read were acceptable. Results: The ERP results showed that sentences with "SEM + SYN" did not elicit early left anterior negativity (ELAN), a component assumed to signal initial syntactic processing, but evoked larger components in the N400 and P600 windows than those of the "SEM" condition, thus exhibiting a biphasic waveform pattern consistent for both groups and in line with previous studies using simpler Chinese syntactic structures. The only difference between the L1 and L2 groups was that L2 learners presented later latencies of the corresponding ERP components. Discussion: Taken together, these results do not support the temporal and functional priorities of syntactic processing as identified in morphologically rich languages (e.g., German) and converge on the notion that even for Chinese complex sentence reading, syntactic and semantic processing are highly interactive. This is consistent across L1 speakers and high-proficiency L2 learners with typologically different language backgrounds.

3.
J Colloid Interface Sci ; 631(Pt B): 214-223, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401929

ABSTRACT

Tin-based anode materials with high theoretical specific capacity are subject to huge volume expansion and poor reaction reversibility, leading to degradation of battery performance. Herein, the steric-hindrance effect and self-sacrificing template behavior of polydopamine were firstly developed to induce the formation of hollow nanospheres assembled by ultrafine SnO2 quantum dots (SnO2-QDs) and nitrogen-doped carbon (NC), containing residual polydopamine (PDA) cores. The PDA@SnO2-QDs/NC hollow nanospheres could effectively accommodate the volume expansion and maintain structural stability. More importantly, the PDA core could capture oxygen free radicals produced by the charge/discharge process and be involved in the evolution of the SEI layer, achieving enhanced electrochemical reaction kinetics. The optimized PDA@SnO2-QDs/NC anode shows a specific capacity of 898 mAh g-1 after 300 cycles at 0.3 A g-1, and scarcely capacity attenuation after 1500 cycles at 1 A g-1. The long-cyclic life is up to 3000 cycles at 3 A g-1. Even after 200 cycles, the anode in the PDA@SnO2-QDs/NC||LFP full battery gives a reversible capacity of 489 mAh g-1 at 0.3 A g-1, with a capacity retention of 77 %. This work casts new light on tin-based anode materials and interface optimization.

4.
Int J Phytoremediation ; 23(12): 1244-1254, 2021.
Article in English | MEDLINE | ID: mdl-33682536

ABSTRACT

How arbuscular mycorrhizal (AM) fungi affect litter nutrient release and soil properties in the nutrient-deficient karst soil, is unclear. An experiment was conducted in this study using a dual compartment device composed of a planting compartment (for the Cinnamomum camphora seedlings with or without Funneliformis mosseae fungus) and a litter compartment (with or without the litter of Arthraxon hispidus). The center baffle between the compartments was covered with a double layer of 20-µm or 0.45-µm nylon mesh, which controlled the entrance of AM mycelium into the litter compartment. The results are as follows: AM mycelium significantly increased the mass loss and carbon and nitrogen releases and decreased the nitrogen concentration in the litter. AM mycelium could significantly increase soil organic carbon, total nitrogen and availability of phosphorus during litter decomposition in the litter compartment. Redundancy analysis showed that the effect of AM mycelium on the soil organic carbon, total nitrogen in the litter compartment was closely associated with the increase in carbon and nitrogen release from litter. It was concluded that AM mycelium can enhance litter decomposition and nutrient releases, contributing to greater nutrient input to the soil and then subsequently higher soil organic carbon and nutrient content in the nutrient-poor karst soils. STATEMENT OF NOVELTYThis study firstly estimated the impacts of arbuscular mycorrhizal fungi on litter nutrient releases and soil properties through root external mycelium.


Subject(s)
Mycorrhizae , Biodegradation, Environmental , Carbon , Fungi , Nitrogen , Nutrients , Plant Roots , Soil , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...