Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Eur J Radiol ; 176: 111510, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38781919

ABSTRACT

PURPOSE: To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. RESULTS: Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77-0.88), 0.76 (95 %CI = 0.62-0.86), 15.70 (95 %CI = 8.12-27.50) and 0.85 (95 %CI = 0.77-0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). CONCLUSION: Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.

2.
Insights Imaging ; 15(1): 92, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530547

ABSTRACT

OBJECTIVES: To collect real-world data about the knowledge and self-perception of young radiologists concerning the use of contrast media (CM) and the management of adverse drug reactions (ADR). METHODS: A survey (29 questions) was distributed to residents and board-certified radiologists younger than 40 years to investigate the current international situation in young radiology community regarding CM and ADRs. Descriptive statistics analysis was performed. RESULTS: Out of 454 respondents from 48 countries (mean age: 31.7 ± 4 years, range 25-39), 271 (59.7%) were radiology residents and 183 (40.3%) were board-certified radiologists. The majority (349, 76.5%) felt they were adequately informed regarding the use of CM. However, only 141 (31.1%) received specific training on the use of CM and 82 (18.1%) about management ADR during their residency. Although 266 (58.6%) knew safety protocols for handling ADR, 69.6% (316) lacked confidence in their ability to manage CM-induced ADRs and 95.8% (435) expressed a desire to enhance their understanding of CM use and handling of CM-induced ADRs. Nearly 300 respondents (297; 65.4%) were aware of the benefits of contrast-enhanced ultrasound, but 249 (54.8%) of participants did not perform it. The preferred CM injection strategy in CT parenchymal examination and CT angiography examination was based on patient's lean body weight in 318 (70.0%) and 160 (35.2%), a predeterminate fixed amount in 79 (17.4%) and 116 (25.6%), iodine delivery rate in 26 (5.7%) and 122 (26.9%), and scan time in 31 (6.8%) and 56 (12.3%), respectively. CONCLUSION: Training in CM use and management ADR should be implemented in the training of radiology residents. CRITICAL RELEVANCE STATEMENT: We highlight the need for improvement in the education of young radiologists regarding contrast media; more attention from residency programs and scientific societies should be focused on training about contrast media use and the management of adverse drug reactions. KEY POINTS: • This survey investigated training of young radiologists about use of contrast media and management adverse reactions. • Most young radiologists claimed they did not receive dedicated training. • An extreme heterogeneity of responses was observed about contrast media indications/contraindications and injection strategy.

3.
Diagnostics (Basel) ; 14(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38473022

ABSTRACT

BACKGROUND: To quantitatively evaluate CT lung abnormalities in COVID-19 survivors from the acute phase to 24-month follow-up. Quantitative CT features as predictors of abnormalities' persistence were investigated. METHODS: Patients who survived COVID-19 were retrospectively enrolled and underwent a chest CT at baseline (T0) and 3 months (T3) after discharge, with pulmonary function tests (PFTs). Patients with residual CT abnormalities repeated the CT at 12 (T12) and 24 (T24) months after discharge. A machine-learning-based software, CALIPER, calculated the CT percentage of the whole lung of normal parenchyma, ground glass (GG), reticulation (Ret), and vascular-related structures (VRSs). Differences (Δ) were calculated between time points. Receiver operating characteristic (ROC) curve analyses were performed to test the baseline parameters as predictors of functional impairment at T3 and of the persistence of CT abnormalities at T12. RESULTS: The cohort included 128 patients at T0, 133 at T3, 61 at T12, and 34 at T24. The GG medians were 8.44%, 0.14%, 0.13% and 0.12% at T0, T3, T12 and T24. The Ret medians were 2.79% at T0 and 0.14% at the following time points. All Δ significantly differed from 0, except between T12 and T24. The GG and VRSs at T0 achieved AUCs of 0.73 as predictors of functional impairment, and area under the curves (AUCs) of 0.71 and 0.72 for the persistence of CT abnormalities at T12. CONCLUSIONS: CALIPER accurately quantified the CT changes up to the 24-month follow-up. Resolution mostly occurred at T3, and Ret persisting at T12 was almost unchanged at T24. The baseline parameters were good predictors of functional impairment at T3 and of abnormalities' persistence at T12.

4.
Radiol Artif Intell ; 6(1): e220257, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38231039

ABSTRACT

Purpose To perform a systematic review and meta-analysis assessing the predictive accuracy of radiomics in the noninvasive determination of isocitrate dehydrogenase (IDH) status in grade 4 and lower-grade diffuse gliomas. Materials and Methods A systematic search was performed in the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases for relevant articles published between January 1, 2010, and July 7, 2021. Pooled sensitivity and specificity across studies were estimated. Risk of bias was evaluated using Quality Assessment of Diagnostic Accuracy Studies-2, and methods were evaluated using the radiomics quality score (RQS). Additional subgroup analyses were performed according to tumor grade, RQS, and number of sequences used (PROSPERO ID: CRD42021268958). Results Twenty-six studies that included 3280 patients were included for analysis. The pooled sensitivity and specificity of radiomics for the detection of IDH mutation were 79% (95% CI: 76, 83) and 80% (95% CI: 76, 83), respectively. Low RQS scores were found overall for the included works. Subgroup analyses showed lower false-positive rates in very low RQS studies (RQS < 6) (meta-regression, z = -1.9; P = .02) compared with adequate RQS studies. No substantial differences were found in pooled sensitivity and specificity for the pure grade 4 gliomas group compared with the all-grade gliomas group (81% and 86% vs 79% and 79%, respectively) and for studies using single versus multiple sequences (80% and 77% vs 79% and 82%, respectively). Conclusion The pooled data showed that radiomics achieved good accuracy performance in distinguishing IDH mutation status in patients with grade 4 and lower-grade diffuse gliomas. The overall methodologic quality (RQS) was low and introduced potential bias. Keywords: Neuro-Oncology, Radiomics, Integration, Application Domain, Glioblastoma, IDH Mutation, Radiomics Quality Scoring Supplemental material is available for this article. Published under a CC BY 4.0 license.


Subject(s)
Glioblastoma , Glioma , Humans , Isocitrate Dehydrogenase/genetics , Radiomics , Glioma/diagnostic imaging , Mutation
5.
Insights Imaging ; 15(1): 8, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38228979

ABSTRACT

PURPOSE: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

7.
Eur Radiol ; 34(4): 2791-2804, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37733025

ABSTRACT

OBJECTIVES: To investigate the intra- and inter-rater reliability of the total radiomics quality score (RQS) and the reproducibility of individual RQS items' score in a large multireader study. METHODS: Nine raters with different backgrounds were randomly assigned to three groups based on their proficiency with RQS utilization: Groups 1 and 2 represented the inter-rater reliability groups with or without prior training in RQS, respectively; group 3 represented the intra-rater reliability group. Thirty-three original research papers on radiomics were evaluated by raters of groups 1 and 2. Of the 33 papers, 17 were evaluated twice with an interval of 1 month by raters of group 3. Intraclass coefficient (ICC) for continuous variables, and Fleiss' and Cohen's kappa (k) statistics for categorical variables were used. RESULTS: The inter-rater reliability was poor to moderate for total RQS (ICC 0.30-055, p < 0.001) and very low to good for item's reproducibility (k - 0.12 to 0.75) within groups 1 and 2 for both inexperienced and experienced raters. The intra-rater reliability for total RQS was moderate for the less experienced rater (ICC 0.522, p = 0.009), whereas experienced raters showed excellent intra-rater reliability (ICC 0.91-0.99, p < 0.001) between the first and second read. Intra-rater reliability on RQS items' score reproducibility was higher and most of the items had moderate to good intra-rater reliability (k - 0.40 to 1). CONCLUSIONS: Reproducibility of the total RQS and the score of individual RQS items is low. There is a need for a robust and reproducible assessment method to assess the quality of radiomics research. CLINICAL RELEVANCE STATEMENT: There is a need for reproducible scoring systems to improve quality of radiomics research and consecutively close the translational gap between research and clinical implementation. KEY POINTS: • Radiomics quality score has been widely used for the evaluation of radiomics studies. • Although the intra-rater reliability was moderate to excellent, intra- and inter-rater reliability of total score and point-by-point scores were low with radiomics quality score. • A robust, easy-to-use scoring system is needed for the evaluation of radiomics research.


Subject(s)
Radiomics , Reading , Humans , Observer Variation , Reproducibility of Results
8.
Skeletal Radiol ; 53(5): 979-981, 2024 May.
Article in English | MEDLINE | ID: mdl-37938358

Subject(s)
Pain , Thigh , Humans , Lower Extremity
9.
Eur J Radiol ; 167: 111080, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37683331

ABSTRACT

PURPOSE: The objective of this study was to assess the inappropriateness rate of oncological follow-up CT examinations. METHODS: Out of 7.000 oncology patients referred for follow-up CT examinations between March and October 2022, a random sample of 10 % was included. Radiology residents assessed the appropriateness using the Italian Society of Medical Oncology (AIOM) guidelines, supervised by senior radiologists. Association between inappropriateness and clinical variables was investigated and variables influencing inappropriateness were analyzed through a binary logistic regression. RESULTS: Three-hundred-eighty-eight examinations (56.1 %) were consistent with AIOM guidelines. An additional 100 (14.5  %) examinations did not follow the recommended schedule but were nevertheless considered appropriate because of suspected recurrence/progression (10.7 %) or adverse event requiring imaging assessment (3.8 %). Two-hundred-four (29.4 %) examinations were rated as inappropriate. Inappropriateness causes were as follows: CT not included in the relevant guideline (n = 47); CT extended to additional anatomical regions (n = 59); CT requested at a shorter time-interval (n = 98). No statistically significant difference was found in age, sex, scan region, and primary cancer between appropriate and inappropriate examinations. The only variable significantly associated with inappropriateness was being referred by a specific hospital unit named "unit 2" in the study (p = 0.009), which was demonstrated to be the only appropriateness independent predictor (OR 1.952). CONCLUSION: This study shows that majority of oncological patients referred for follow-up CT follows standard guidelines. However, a non-negligible proportion was rated as inappropriate, mainly due to the shorter time-interval. No clinical variable was associated with inappropriateness, except for referral by a specific hospital unit.


Subject(s)
Medical Oncology , Physical Examination , Humans , Cross-Sectional Studies , Follow-Up Studies , Tomography, X-Ray Computed
10.
Diagnostics (Basel) ; 13(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627882

ABSTRACT

The spleen, often referred to as the "forgotten organ", plays numerous important roles in various diseases. Recently, there has been an increased interest in the application of radiomics in different areas of medical imaging. This systematic review aims to assess the current state of the art and evaluate the methodological quality of radiomics applications in spleen imaging. A systematic search was conducted on PubMed, Scopus, and Web of Science. All the studies were analyzed, and several characteristics, such as year of publication, research objectives, and number of patients, were collected. The methodological quality was evaluated using the radiomics quality score (RQS). Fourteen articles were ultimately included in this review. The majority of these articles were published in non-radiological journals (78%), utilized computed tomography (CT) for extracting radiomic features (71%), and involved not only the spleen but also other organs for feature extraction (71%). Overall, the included papers achieved an average RQS total score of 9.71 ± 6.37, corresponding to an RQS percentage of 27.77 ± 16.04. In conclusion, radiomics applications in spleen imaging demonstrate promising results in various clinical scenarios. However, despite all the included papers reporting positive outcomes, there is a lack of consistency in the methodological approaches employed.

11.
Eur J Radiol Open ; 11: 100512, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37575311

ABSTRACT

Background: Structured reporting has been demonstrated to increase report completeness and to reduce error rate, also enabling data mining of radiological reports. Still, structured reporting is perceived by radiologists as a fragmented reporting style, limiting their freedom of expression. Purpose: A deep learning-based natural language processing method was developed to automatically convert unstructured COVID-19 chest CT reports into structured reports. Methods: Two hundred-two COVID-19 chest CT were retrospectively reviewed by two experienced radiologists, who wrote for each exam a free-form text radiological report and coherently filled the template provided by the Italian Society of Medical and Interventional Radiology, used as ground-truth. A semi-supervised convolutional neural network was implemented to extract 62 categorical variables from the report. Two iterations were carried-out, the first without fine-tuning, the second one performing a fine-tuning. The performance was measured using the mean accuracy and the F1 mean score. An error analysis was performed to identify errors entirely attributable to incorrect processing of the model. Results: The algorithm achieved a mean accuracy of 93.7% and an F1 score 93.8% in the first iteration. Most of the errors were exclusively attributable to wrong inference (46%). In the second iteration the model achieved for both parameters 95,8% and percentage of errors attributable to wrong inference decreased to 26%. Conclusions: The convolutional neural network achieved an optimal performance in the automated conversion of free-form text into structured radiological reports, overcoming all the limitation attributed to structured reporting and finally paving the way for data mining of radiological report.

12.
Eur J Radiol Open ; 11: 100511, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37520768

ABSTRACT

Background: The new immunotherapies have not only changed the oncological therapeutic approach but have also made it necessary to develop new imaging methods for assessing the response to treatment. Delta radiomics consists of the analysis of radiomic features variation between different medical images, usually before and after therapy. Purpose: This review aims to evaluate the role of delta radiomics in the immunotherapy response assessment. Methods: A systematic search was performed in PubMed, Scopus, and Web Of Science using "delta radiomics AND immunotherapy" as search terms. The included articles' methodological quality was measured using the Radiomics Quality Score (RQS) tool. Results: Thirteen articles were finally included in the systematic review. Overall, the RQS of the included studies ranged from 4 to 17, with a mean RQS total of 11,15 ± 4,18 with a corresponding percentage of 30.98 ± 11.61 %. Eleven articles out of 13 performed imaging at multiple time points. All the included articles performed feature reduction. No study carried out prospective validation, decision curve analysis, or cost-effectiveness analysis. Conclusions: Delta radiomics has been demonstrated useful in evaluating the response in oncologic patients undergoing immunotherapy. The overall quality was found law, due to the lack of prospective design and external validation. Thus, further efforts are needed to bring delta radiomics a step closer to clinical implementation.

13.
Diagnostics (Basel) ; 13(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37370915

ABSTRACT

Chest X-ray (CXR) is the most important technique for performing chest imaging, despite its well-known limitations in terms of scope and sensitivity. These intrinsic limitations of CXR have prompted the development of several artificial intelligence (AI)-based software packages dedicated to CXR interpretation. The online database "AI for radiology" was queried to identify CE-marked AI-based software available for CXR interpretation. The returned studies were divided according to the targeted disease. AI-powered computer-aided detection software is already widely adopted in screening and triage for pulmonary tuberculosis, especially in countries with few resources and suffering from high a burden of this disease. AI-based software has also been demonstrated to be valuable for the detection of lung nodules detection, automated flagging of positive cases, and post-processing through the development of digital bone suppression software able to produce digital bone suppressed images. Finally, the majority of available CE-marked software packages for CXR are designed to recognize several findings, with potential differences in sensitivity and specificity for each of the recognized findings.

14.
J Pers Med ; 13(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37240898

ABSTRACT

PURPOSE: To assess the ability of apparent diffusion coefficient (ADC) measurements in predicting the histological grade of endometrial cancer. A secondary goal was to assess the agreement between MRI and surgical staging as an accurate measurement. METHODS: Patients with endometrial cancers diagnosed between 2018-2020 and having received both MRI and surgical staging were retrospectively enrolled. Patients were characterized according to histology, tumor size, FIGO stage (MRI and surgical stage), and functional MRI parameters (DCE and DWI/ADC). Statistical analysis was performed to determine if an association could be identified between ADC variables and histology grade. Secondarily, we assessed the degree of agreement between the MRI and surgical stages according to the FIGO classification. RESULTS: The cohort included 45 women with endometrial cancer. Quantitative analysis of ADC variables did not find a statistically significant association with histological tumor grades. DCE showed higher sensitivity than DWI/ADC in the assessment of myometrial invasion (85.00% versus 65.00%) with the same specificity (80.00%). A good agreement between MRI and histopathology for the FIGO stage was found (kappa of 0.72, p < 0.01). Differences in staging between MRI and surgery were detected in eight cases, which could not be justified by the interval between MRI and surgery. CONCLUSIONS: ADC values were not useful for predicting endometrial cancer grade, despite the good agreement between MRI interpretation and histopathology of endometrial cancer staging at our center.

15.
Explor Target Antitumor Ther ; 4(2): 344-354, 2023.
Article in English | MEDLINE | ID: mdl-37205309

ABSTRACT

Oncologic emergencies are a wide spectrum of oncologic conditions caused directly by malignancies or their treatment. Oncologic emergencies may be classified according to the underlying physiopathology in metabolic, hematologic, and structural conditions. In the latter, radiologists have a pivotal role, through an accurate diagnosis useful to provide optimal patient care. Structural conditions may involve the central nervous system, thorax, or abdomen, and emergency radiologists have to know the characteristics imaging findings of each one of them. The number of oncologic emergencies is growing due to the increased incidence of malignancies in the general population and also to the improved survival of these patients thanks to the advances in cancer treatment. Artificial intelligence (AI) could be a solution to assist emergency radiologists with this rapidly increasing workload. To our knowledge, AI applications in the setting of the oncologic emergency are mostly underexplored, probably due to the relatively low number of oncologic emergencies and the difficulty in training algorithms. However, cancer emergencies are defined by the cause and not by a specific pattern of radiological symptoms and signs. Therefore, it can be expected that AI algorithms developed for the detection of these emergencies in the non-oncological field can be transferred to the clinical setting of oncologic emergency. In this review, a craniocaudal approach was followed and central nervous system, thoracic, and abdominal oncologic emergencies have been addressed regarding the AI applications reported in literature. Among the central nervous system emergencies, AI applications have been reported for brain herniation and spinal cord compression. In the thoracic district the addressed emergencies were pulmonary embolism, cardiac tamponade and pneumothorax. Pneumothorax was the most frequently described application for AI, to improve sensibility and to reduce the time-to-diagnosis. Finally, regarding abdominal emergencies, AI applications for abdominal hemorrhage, intestinal obstruction, intestinal perforation, and intestinal intussusception have been described.

16.
Eur Radiol Exp ; 7(1): 18, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37032383

ABSTRACT

BACKGROUND: The role of computed tomography (CT) in the diagnosis and characterization of coronavirus disease 2019 (COVID-19) pneumonia has been widely recognized. We evaluated the performance of a software for quantitative analysis of chest CT, the LungQuant system, by comparing its results with independent visual evaluations by a group of 14 clinical experts. The aim of this work is to evaluate the ability of the automated tool to extract quantitative information from lung CT, relevant for the design of a diagnosis support model. METHODS: LungQuant segments both the lungs and lesions associated with COVID-19 pneumonia (ground-glass opacities and consolidations) and computes derived quantities corresponding to qualitative characteristics used to clinically assess COVID-19 lesions. The comparison was carried out on 120 publicly available CT scans of patients affected by COVID-19 pneumonia. Scans were scored for four qualitative metrics: percentage of lung involvement, type of lesion, and two disease distribution scores. We evaluated the agreement between the LungQuant output and the visual assessments through receiver operating characteristics area under the curve (AUC) analysis and by fitting a nonlinear regression model. RESULTS: Despite the rather large heterogeneity in the qualitative labels assigned by the clinical experts for each metric, we found good agreement on the metrics compared to the LungQuant output. The AUC values obtained for the four qualitative metrics were 0.98, 0.85, 0.90, and 0.81. CONCLUSIONS: Visual clinical evaluation could be complemented and supported by computer-aided quantification, whose values match the average evaluation of several independent clinical experts. KEY POINTS: We conducted a multicenter evaluation of the deep learning-based LungQuant automated software. We translated qualitative assessments into quantifiable metrics to characterize coronavirus disease 2019 (COVID-19) pneumonia lesions. Comparing the software output to the clinical evaluations, results were satisfactory despite heterogeneity of the clinical evaluations. An automatic quantification tool may contribute to improve the clinical workflow of COVID-19 pneumonia.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , SARS-CoV-2 , Lung/diagnostic imaging , Software
17.
J Clin Med ; 12(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36902633

ABSTRACT

In modern clinical practice, there is an increasing dependence on imaging techniques in several settings, and especially during emergencies. Consequently, there has been an increase in the frequency of imaging examinations and thus also an increased risk of radiation exposure. In this context, a critical phase is a woman's pregnancy management that requires a proper diagnostic assessment to reduce radiation risk to the fetus and mother. The risk is greatest during the first phases of pregnancy at the time of organogenesis. Therefore, the principles of radiation protection should guide the multidisciplinary team. Although diagnostic tools that do not employ ionizing radiation, such as ultrasound (US) and magnetic resonance imaging (MRI) should be preferred, in several settings as polytrauma, computed tomography (CT) nonetheless remains the examination to perform, beyond the fetus risk. In addition, protocol optimization, using dose-limiting protocols and avoiding multiple acquisitions, is a critical point that makes it possible to reduce risks. The purpose of this review is to provide a critical evaluation of emergency conditions, e.g., abdominal pain and trauma, considering the different diagnostic tools that should be used as study protocols in order to control the dose to the pregnant woman and fetus.

18.
Diagnostics (Basel) ; 13(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36832113

ABSTRACT

Hepatocellular carcinoma (HCC) remains not only a cause of a considerable part of oncologic mortality, but also a diagnostic and therapeutic challenge for healthcare systems worldwide. Early detection of the disease and consequential adequate therapy are imperative to increase patients' quality of life and survival. Imaging plays, therefore, a crucial role in the surveillance of patients at risk, the detection and diagnosis of HCC nodules, as well as in the follow-up post-treatment. The unique imaging characteristics of HCC lesions, deriving mainly from the assessment of their vascularity on contrast-enhanced computed tomography (CT), magnetic resonance (MR) or contrast-enhanced ultrasound (CEUS), allow for a more accurate, noninvasive diagnosis and staging. The role of imaging in the management of HCC has further expanded beyond the plain confirmation of a suspected diagnosis due to the introduction of ultrasound and hepatobiliary MRI contrast agents, which allow for the detection of hepatocarcinogenesis even at an early stage. Moreover, the recent technological advancements in artificial intelligence (AI) in radiology contribute an important tool for the diagnostic prediction, prognosis and evaluation of treatment response in the clinical course of the disease. This review presents current imaging modalities and their central role in the management of patients at risk and with HCC.

19.
Eur Radiol ; 33(3): 1884-1894, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36282312

ABSTRACT

OBJECTIVE: The main aim of the present systematic review was a comprehensive overview of the Radiomics Quality Score (RQS)-based systematic reviews to highlight common issues and challenges of radiomics research application and evaluate the relationship between RQS and review features. METHODS: The literature search was performed on multiple medical literature archives according to PRISMA guidelines for systematic reviews that reported radiomic quality assessment through the RQS. Reported scores were converted to a 0-100% scale. The Mann-Whitney and Kruskal-Wallis tests were used to compare RQS scores and review features. RESULTS: The literature research yielded 345 articles, from which 44 systematic reviews were finally included in the analysis. Overall, the median of RQS was 21.00% (IQR = 11.50). No significant differences of RQS were observed in subgroup analyses according to targets (oncological/not oncological target, neuroradiology/body imaging focus and one imaging technique/more than one imaging technique, characterization/prognosis/detection/other). CONCLUSIONS: Our review did not reveal a significant difference of quality of radiomic articles reported in systematic reviews, divided in different subgroups. Furthermore, low overall methodological quality of radiomics research was found independent of specific application domains. While the RQS can serve as a reference tool to improve future study designs, future research should also be aimed at improving its reliability and developing new tools to meet an ever-evolving research space. KEY POINTS: • Radiomics is a promising high-throughput method that may generate novel imaging biomarkers to improve clinical decision-making process, but it is an inherently complex analysis and often lacks reproducibility and generalizability. • The Radiomics Quality Score serves a necessary role as the de facto reference tool for assessing radiomics studies. • External auditing of radiomics studies, in addition to the standard peer-review process, is valuable to highlight common limitations and provide insights to improve future study designs and practical applicability of the radiomics models.


Subject(s)
Diagnostic Imaging , Humans , Reproducibility of Results , Prognosis , Biomarkers
20.
Diagnostics (Basel) ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36553009

ABSTRACT

Background: Radiomics of salivary gland imaging can support clinical decisions in different clinical scenarios, such as tumors, radiation-induced xerostomia and sialadenitis. This review aims to evaluate the methodological quality of radiomics studies on salivary gland imaging. Material and Methods: A systematic search was performed, and the methodological quality was evaluated using the radiomics quality score (RQS). Subgroup analyses according to the first author's professional role (medical or not medical), journal type (radiological journal or other) and the year of publication (2021 or before) were performed. The correlation of RQS with the number of patients was calculated. Results: Twenty-three articles were included (mean RQS 11.34 ± 3.68). Most studies well-documented the imaging protocol (87%), while neither prospective validations nor cost-effectiveness analyses were performed. None of the included studies provided open-source data. A statistically significant difference in RQS according to the year of publication was found (p = 0.009), with papers published in 2021 having slightly higher RQSs than older ones. No differences according to journal type or the first author's professional role were demonstrated. A moderate relationship between the overall RQS and the number of patients was found. Conclusions: Radiomics application in salivary gland imaging is increasing. Although its current clinical applicability can be affected by the somewhat inadequate quality of the papers, a significant improvement in radiomics methodologies has been demonstrated in the last year.

SELECTION OF CITATIONS
SEARCH DETAIL
...