Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195652

ABSTRACT

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Animals , Humans , Mice , Cell Nucleus , Disease Models, Animal , Early Detection of Cancer , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Collagen/metabolism
2.
Redox Biol ; 68: 102962, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38029455

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.


Subject(s)
Ferroptosis , Pancreatic Neoplasms , Selenium , Humans , Pancreas , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Lipid Peroxidation , Pancreatic Neoplasms
3.
J Biol Chem ; 299(8): 105054, 2023 08.
Article in English | MEDLINE | ID: mdl-37454740

ABSTRACT

Neurodegenerative diseases are often characterized by the codeposition of different amyloidogenic proteins, normally defining distinct proteinopathies. An example is represented by prion diseases, where the classical deposition of the aberrant conformational isoform of the prion protein (PrPSc) can be associated with tau insoluble species, which are usually involved in another class of diseases called tauopathies. How this copresence of amyloidogenic proteins can influence the progression of prion diseases is still a matter of debate. Recently, the cellular form of the prion protein, PrPC, has been investigated as a possible receptor of amyloidogenic proteins, since its binding activity with Aß, tau, and α-synuclein has been reported, and it has been linked to several neurotoxic behaviors exerted by these proteins. We have previously shown that the treatment of chronically prion-infected cells with tau K18 fibrils reduced PrPSc levels. In this work, we further explored this mechanism by using another tau construct that includes the sequence that forms the core of Alzheimer's disease tau filaments in vivo to obtain a distinct fibril type. Despite a difference of six amino acids, these two constructs form fibrils characterized by distinct biochemical and biological features. However, their effects on PrPSc reduction were comparable and probably based on the binding to PrPC at the plasma membrane, inhibiting the pathological conversion event. Our results suggest PrPC as receptor for different types of tau fibrils and point out a role of tau amyloid fibrils in preventing the pathological PrPC to PrPSc conformational change.


Subject(s)
Neurodegenerative Diseases , Prion Diseases , Prions , tau Proteins , Humans , Amyloidogenic Proteins , Prion Diseases/metabolism , Prion Proteins , Prions/metabolism , tau Proteins/metabolism
4.
J Exp Clin Cancer Res ; 41(1): 315, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36289544

ABSTRACT

BACKGROUND: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood. METHODS: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-ß) signaling. RESULTS: We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-ß signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-ß type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells. CONCLUSIONS: We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Receptor, Transforming Growth Factor-beta Type I , RNA, Small Interfering , Pancreatic Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Transforming Growth Factor beta , RNA, Messenger , Activin Receptors , Cell Movement/genetics , Cell Line, Tumor , Laminin/genetics , Laminin/metabolism , Pancreatic Neoplasms
5.
Metabolites ; 11(3)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652890

ABSTRACT

Cholesterol is a non-essential metabolite that exerts both structural and signaling functions. However, cholesterol biosynthesis is elevated, and actively supports, pancreatic carcinogenesis. Our previous work showed that statins block the reprogramming of mutant KRAS-expressing acinar cells, that spontaneously undergo a metaplastic event termed acinar-to-ductal metaplasia (ADM) to initiate carcinogenesis. Here we tested the impact of cholesterol supplementation on isolated primary wild-type acinar cells and observed enhanced ductal transdifferentiation, associated with generation of the second messenger cyclic adenosine monophosphate (cAMP) and the induction of downstream protein kinase A (PKA). Inhibition of PKA suppresses cholesterol-induced ADM ex vivo. Live imaging using fluorescent biosensors dissected the temporal and spatial dynamics of PKA activation upon cholesterol addition and showed uneven activation both in the cytosol and on the outer mitochondrial membrane of primary pancreatic acinar cells. The ability of cholesterol to activate cAMP signaling is lost in tumor cells. Qualitative examination of multiple normal and transformed cell lines supports the notion that the cAMP/PKA axis plays different roles during multi-step pancreatic carcinogenesis. Collectively, our findings describe the impact of cholesterol availability on the cyclic AMP/PKA axis and plasticity of pancreatic acinar cells.

6.
Nat Commun ; 11(1): 3945, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770028

ABSTRACT

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading to enhanced vesicular trafficking and secretion. The mut-p53/HIF1α/miR-30d axis potentiates the release of soluble factors and the deposition and remodeling of the ECM, affecting mechano-signaling and stromal cells activation within the tumor microenvironment, thereby enhancing tumor growth and metastatic colonization.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Golgi Apparatus/pathology , Li-Fraumeni Syndrome/genetics , MicroRNAs/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Biopsy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Female , Fibroblasts , Gene Expression Regulation, Neoplastic , Golgi Apparatus/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Li-Fraumeni Syndrome/pathology , Mice , Microtubules/metabolism , Microtubules/pathology , Mutation , Primary Cell Culture , Secretory Vesicles/metabolism , Secretory Vesicles/pathology , Signal Transduction/genetics , Skin/cytology , Skin/pathology , Tumor Microenvironment/genetics , Xenograft Model Antitumor Assays
7.
Oncogene ; 38(34): 6184-6195, 2019 08.
Article in English | MEDLINE | ID: mdl-31312025

ABSTRACT

Missense mutations in the TP53 gene are frequent in human cancers, giving rise to mutant p53 proteins that can acquire oncogenic properties. Gain of function mutant p53 proteins can enhance tumour aggressiveness by promoting cell invasion, metastasis and chemoresistance. Accumulating evidences indicate that mutant p53 proteins can also modulate cell homeostatic processes, suggesting that missense p53 mutation may increase resistance of tumour cells to intrinsic and extrinsic cancer-related stress conditions, thus offering a selective advantage. Here we provide evidence that mutant p53 proteins can modulate the Unfolded Protein Response (UPR) to increase cell survival upon Endoplasmic Reticulum (ER) stress, a condition to which cancer cells are exposed during tumour formation and progression, as well as during therapy. Mechanistically, this action of mutant p53 is due to enhanced activation of the pro-survival UPR effector ATF6, coordinated with inhibition of the pro-apoptotic UPR effectors JNK and CHOP. In a triple-negative breast cancer cell model with missense TP53 mutation, we found that ATF6 activity is necessary for viability and invasion phenotypes. Together, these findings suggest that ATF6 inhibitors might be combined with mutant p53-targeting drugs to specifically sensitise cancer cells to endogenous or chemotherapy-induced ER stress.


Subject(s)
Activating Transcription Factor 6/genetics , Endoplasmic Reticulum Stress/genetics , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Unfolded Protein Response/genetics , Activating Transcription Factor 6/metabolism , Animals , Cells, Cultured , Disease Progression , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Mice, Transgenic , Mutation/physiology , Neoplasm Invasiveness , Neoplasms/metabolism , Neoplasms/pathology , Up-Regulation
8.
Nat Commun ; 10(1): 1326, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30902980

ABSTRACT

Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate lipid biosynthesis and adipogenesis by controlling the expression of several enzymes required for cholesterol, fatty acid, triacylglycerol and phospholipid synthesis. In vertebrates, SREBP activation is mainly controlled by a complex and well-characterized feedback mechanism mediated by cholesterol, a crucial bio-product of the SREBP-activated mevalonate pathway. In this work, we identified acto-myosin contractility and mechanical forces imposed by the extracellular matrix (ECM) as SREBP1 regulators. SREBP1 control by mechanical cues depends on geranylgeranyl pyrophosphate, another key bio-product of the mevalonate pathway, and impacts on stem cell fate in mouse and on fat storage in Drosophila. Mechanistically, we show that activation of AMP-activated protein kinase (AMPK) by ECM stiffening and geranylgeranylated RhoA-dependent acto-myosin contraction inhibits SREBP1 activation. Our results unveil an unpredicted and evolutionary conserved role of SREBP1 in rewiring cell metabolism in response to mechanical cues.


Subject(s)
Lipid Metabolism , Mechanotransduction, Cellular , Sterol Regulatory Element Binding Protein 1/metabolism , AMP-Activated Protein Kinases/metabolism , Actins/metabolism , Adipogenesis , Animals , Cell Line, Tumor , Cytoskeleton/metabolism , Drosophila melanogaster/metabolism , Evolution, Molecular , Extracellular Matrix/metabolism , Humans , Lipids/biosynthesis , Mice , Myosins/metabolism , Protein Prenylation , Transcription, Genetic , rhoA GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...