Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 929689, 2022.
Article in English | MEDLINE | ID: mdl-35937683

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection currently remains one of the biggest global challenges that can lead to acute respiratory distress syndrome (CARDS) in severe cases. In line with this, prior pulmonary tuberculosis (TB) is a risk factor for long-term respiratory impairment. Post-TB lung dysfunction often goes unrecognized, despite its relatively high prevalence and its association with reduced quality of life. In this study, we used a metabolomics analysis to identify potential biomarkers that aid in the prognosis of COVID-19 morbidity and mortality in post-TB infected patients. This analysis involved blood samples from 155 SARS-CoV-2 infected adults, of which 23 had a previous diagnosis of TB (post-TB), while 132 did not have a prior or current TB infection. Our analysis indicated that the vast majority (~92%) of post-TB individuals showed severe SARS-CoV-2 infection, required intensive oxygen support with a significantly high mortality rate (52.2%). Amongst individuals with severe COVID-19 symptoms, we report a significant decline in the levels of amino acids, notably the branched chains amino acids (BCAAs), more so in the post-TB cohort (FDR <= 0.05) in comparison to mild and asymptomatic cases. Indeed, we identified betaine and BCAAs as potential prognostic metabolic biomarkers of severity and mortality, respectively, in COVID-19 patients who have been exposed to TB. Moreover, we identified serum alanine as an important metabolite at the interface of severity and mortality. Hence, our data associated COVID-19 mortality and morbidity with a long-term metabolically driven consequence of TB infection. In summary, our study provides evidence for a higher mortality rate among COVID-19 infection patients who have history of prior TB infection diagnosis, which mandates validation in larger population cohorts.


Subject(s)
COVID-19 , Tuberculosis , Adult , Alanine , Humans , Morbidity , Prognosis , Quality of Life , SARS-CoV-2 , Tuberculosis/complications , Tuberculosis/diagnosis , Tuberculosis/epidemiology
2.
Front Immunol ; 12: 631139, 2021.
Article in English | MEDLINE | ID: mdl-33717166

ABSTRACT

COVID-19 emerged from China in December 2019 and during 2020 spread to every continent including Antarctica. The coronavirus, SARS-CoV-2, has been identified as the causative pathogen, and its spread has stretched the capacities of healthcare systems and negatively affected the global economy. This review provides an update on the virus, including the genome, the risks associated with the emergence of variants, mode of transmission, immune response, COVID-19 in children and the elderly, and advances made to contain, prevent and manage the disease. Although our knowledge of the mechanics of virus transmission and the immune response has been substantially demystified, concerns over reinfection, susceptibility of the elderly and whether asymptomatic children promote transmission remain unanswered. There are also uncertainties about the pathophysiology of COVID-19 and why there are variations in clinical presentations and why some patients suffer from long lasting symptoms-"the long haulers." To date, there are no significantly effective curative drugs for COVID-19, especially after failure of hydroxychloroquine trials to produce positive results. The RNA polymerase inhibitor, remdesivir, facilitates recovery of severely infected cases but, unlike the anti-inflammatory drug, dexamethasone, does not reduce mortality. However, vaccine development witnessed substantial progress with several being approved in countries around the globe.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Vaccines/immunology , COVID-19/immunology , Dexamethasone/therapeutic use , SARS-CoV-2/physiology , Adenosine Monophosphate/therapeutic use , Aged , Alanine/therapeutic use , Antigenic Variation , Asymptomatic Diseases , COVID-19/therapy , COVID-19/transmission , Child , Humans , Immunity , Pandemics/prevention & control , SARS-CoV-2/pathogenicity
3.
Int J Infect Dis ; 96: 323-326, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32376305

ABSTRACT

Identifying the origin of the rabies virus (RABV) infection may have significant implications for control measures. Here, we identified the source of a RABV infection of two Nepalese migrants in Qatar by comparing their RABV genomes with RABV genomes isolated from the brains of a RABV infected camel and fox from Qatar.


Subject(s)
Rabies virus/genetics , Rabies/virology , Adult , Animals , Brain/virology , Camelus , Foxes , Genome, Viral , Humans , Male , Qatar , Rabies/veterinary , Rabies virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...