Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Interdiscip Sci ; 12(1): 1-11, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31531812

ABSTRACT

Mechanistic target of rapamycin (mTOR) is a critical protein in the regulation of cell fate decision making, especially in cancer cells. mTOR acts as a signal integrator and is one of the main elements of interactions among the pivotal cellular processes such as cell death, autophagy, metabolic reprogramming, cell growth, and cell cycle. The temporal control of these processes is essential for the cellular homeostasis and dysregulation of mTOR signaling pathway results in different phenotypes, including aging, oncogenesis, cell survival, cell growth, senescence, quiescence, and cell death. In this paper, we have proposed a systems biology roadmap to study mTOR control system, which introduces the theoretical and experimental modalities to decode temporal and dynamical characteristics of mTOR signaling in cancer.


Subject(s)
Systems Biology/methods , TOR Serine-Threonine Kinases/metabolism , Animals , Cellular Senescence/genetics , Cellular Senescence/physiology , Humans , Models, Theoretical , TOR Serine-Threonine Kinases/genetics
2.
J Theor Biol ; 483: 109992, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31493485

ABSTRACT

Signal integration has a crucial role in the cell fate decision and dysregulation of the cellular signaling pathways is a primary characteristic of cancer. As a signal integrator, mTOR shows a complex dynamical behavior which determines the cell fate at different cellular processes levels, including cell cycle progression, cell survival, cell death, metabolic reprogramming, and aging. The dynamics of the complex responses to rapamycin in cancer cells have been attributed to its differential time-dependent inhibitory effects on mTORC1 and mTORC2, the two main complexes of mTOR. Two explanations were previously provided for this phenomenon: 1-Rapamycin does not inhibit mTORC2 directly, whereas it prevents mTORC2 formation by sequestering free mTOR protein (Le Chatelier's principle). 2-Components like Phosphatidic Acid (PA) further stabilize mTORC2 compared with mTORC1. To understand the mechanism by which rapamycin differentially inhibits the mTOR complexes in the cancer cells, we present a mathematical model of rapamycin mode of action based on the first explanation, i.e., Le Chatelier's principle. Translating the interactions among components of mTORC1 and mTORC2 into a mathematical model revealed the dynamics of rapamycin action in different doses and time-intervals of rapamycin treatment. This model shows that rapamycin has stronger effects on mTORC1 compared with mTORC2, simply due to its direct interaction with free mTOR and mTORC1, but not mTORC2, without the need to consider other components that might further stabilize mTORC2. Based on our results, even when mTORC2 is less stable compared with mTORC1, it can be less inhibited by rapamycin.


Subject(s)
Models, Biological , Neoplasms/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Humans , Kinetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Sirolimus/pharmacology , Time Factors
3.
Hematol Oncol Stem Cell Ther ; 11(4): 189-194, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29080400

ABSTRACT

In recent years, tissue regeneration has become a promising field for developing stem cell-based transplantation therapies for human patients. Adult stem cells are affected by the same aging mechanisms that involve somatic cells. One of the mechanisms involved in cellular aging is hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and disruption of 5' adenosine monophosphate-activated protein kinase (AMPK). Aging of stem cells results in their impaired regenerative capacity and depletion of stem cell pools in adult tissue, which results in lower efficacy of stem cell therapy. By utilizing an effective therapeutic intervention for aged stem cells, stem cell therapy can become more promising for future application. mTORC1 inhibition is a practical approach to preserve the stem cell pool. In this article, we review the dynamic interaction between sirtuin (silent mating type information regulation 2 homolog) 1, AMPK, and mTORC1. We propose that using AMPK activators such as 5-aminoimidazole-4-carboxamide ribonucleotide, A769662, metformin, and oxidized nicotinamide adenine dinucleotide (NAD+) are practical ways to be employed for achieving better optimized results in stem cell-based transplantation therapies.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adult Stem Cells , Aging/metabolism , Cellular Senescence/drug effects , Enzyme Activators/pharmacology , Regeneration/drug effects , Stem Cell Transplantation , Adult Stem Cells/metabolism , Adult Stem Cells/transplantation , Aging/drug effects , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism
4.
Int J Stem Cells ; 8(2): 191-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26634067

ABSTRACT

BACKGROUND: Nowadays, stroke leads to a significant part of the adult mortality and morbidity and also it could result in some neurological deficits in the patients' lives. Cell therapy has opened a new approach to treat the brain ischemia and reduce its terrible effects on the patients' lives. There are several articles which show that the cell therapy could be beneficial for treating brain stroke. In this study, we have planned to present a new cell therapy method for stroke by administration of Mesenchymal stem cells and differentiated neural stem cells without astrocytes. METHOD AND MATERIALS: The Mesenchymal stem cells were isolated from tibia and femur of a 250~300 g rat and they were cultured in DMEM/F12, 10% fetal bovine serum, 1% Pen/Strep. Neural stem cells were isolated from 14 days rat embryo ganglion eminence and were cultured in NSA media containing Neurobasal, 2% B27, bFGF 10 ng/ml and EGF 20 ng/ml after 5 days they formed some neurospheres. The isolated neural stem cells were differentiated to neural lineages by adding 5% fetal bovine serum to their culture media. After 48 hours the astrocytes were depleted by using MACS kit. RESULTS: The group that received Mesenchymal stem cells systemically and differentiated neural stem cells without astrocytes had the best neurological outcomes and the least infarct volume and apoptosis. It could be understood that this cell therapy method might cause almost full recovery after brain stoke. CONCLUSION: Using combination cell therapy with Mesenchymal stem cells and differentiated neural stem cells with removed astrocyte could provide a novel method for curing brain stroke.

5.
N Am J Med Sci ; 7(9): 390-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26605202

ABSTRACT

INTRODUCTION: Stroke is one of the most important causes of disability in developed countries and, unfortunately, there is no effective treatment for this major problem of central nervous system (CNS); cell therapy may be helpful to recover this disease. In some conditions such as cardiac surgeries and neurosurgeries, there are some possibilities of happening brain stroke. Inflammation of CNS plays an important role in stroke pathogenesis, in addition, apoptosis and neural death could be the other reasons of poor neurological out come after stroke. In this study, we examined the preventive effects of the neural stem cells (NSCs) and mesenchymal stem cells (MSCs) intra-ventricular injected on stroke in rats. AIM: The aim of this study was to investigate the preventive effects of neural and MSCs for stroke in rats. MATERIALS AND METHODS: The MSCs were isolated by flashing the femurs and tibias of the male rats with appropriate media. The NSCs were isolated from rat embryo ganglion eminence and they cultured NSCs media till the neurospheres formed. Both NSCs and MSCs were labeled with PKH26-GL. One day before stroke, the cells were injected into lateral ventricle stereotactically. RESULTS: During following for 28 days, the neurological scores indicated that there are better recoveries in the groups received stem cells and they had less lesion volume in their brain measured by hematoxylin and eosin staining. Furthermore, the activities of caspase-3 were lower in the stem cell received groups than control group and the florescent microscopy images showed that the stem cells migrated to various zones of the brains. CONCLUSION: Both NSCs and MSCs are capable of protecting the CNS against ischemia and they may be good ways to prevent brain stroke consequences situations.

6.
Neural Regen Res ; 10(6): 904-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26199606

ABSTRACT

Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

7.
Int J Stem Cells ; 8(1): 99-105, 2015 May.
Article in English | MEDLINE | ID: mdl-26019759

ABSTRACT

OBJECTIVES: Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. METHOD AND MATERIALS: The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. RESULT: The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. CONCLUSIONS: The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...