Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38826447

ABSTRACT

Ovulation is a spatiotemporally coordinated process that involves several tightly controlled events, including oocyte meiotic maturation, cumulus expansion, follicle wall rupture and repair, and ovarian stroma remodeling. To date, no studies have detailed the precise window of ovulation at single-cell resolution. Here, we performed parallel single-cell RNA-seq and spatial transcriptomics on paired mouse ovaries across an ovulation time course to map the spatiotemporal profile of ovarian cell types. We show that major ovarian cell types exhibit time-dependent transcriptional states enriched for distinct functions and have specific localization profiles within the ovary. We also identified gene markers for ovulation-dependent cell states and validated these using orthogonal methods. Finally, we performed cell-cell interaction analyses to identify ligand-receptor pairs that may drive ovulation, revealing previously unappreciated interactions. Taken together, our data provides a rich and comprehensive resource of murine ovulation that can be mined for discovery by the scientific community.

2.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659950

ABSTRACT

Voltage imaging enables high-throughput investigation of neuronal activity, yet its utility is often constrained by a low signal-to-noise ratio (SNR). Conventional denoising algorithms, such as those based on matrix factorization, impose limiting assumptions about the noise process and the spatiotemporal structure of the signal. While deep learning based denoising techniques offer greater adaptability, existing approaches fail to fully exploit the fast temporal dynamics and unique short- and long-range dependencies within voltage imaging datasets. Here, we introduce CellMincer, a novel self-supervised deep learning method designed specifically for denoising voltage imaging datasets. CellMincer operates on the principle of masking and predicting sparse sets of pixels across short temporal windows and conditions the denoiser on precomputed spatiotemporal auto-correlations to effectively model long-range dependencies without the need for large temporal denoising contexts. We develop and utilize a physics-based simulation framework to generate realistic datasets for rigorous hyperparameter optimization and ablation studies, highlighting the key role of conditioning the denoiser on precomputed spatiotemporal auto-correlations to achieve 3-fold further reduction in noise. Comprehensive benchmarking on both simulated and real voltage imaging datasets, including those with paired patch-clamp electrophysiology (EP) as ground truth, demonstrates CellMincer's state-of-the-art performance. It achieves substantial noise reduction across the entire frequency spectrum, enhanced detection of subthreshold events, and superior cross-correlation with ground-truth EP recordings. Finally, we demonstrate how CellMincer's addition to a typical voltage imaging data analysis workflow improves neuronal segmentation, peak detection, and ultimately leads to significantly enhanced separation of functional phenotypes.

3.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405900

ABSTRACT

Understanding how intra-tumoral immune populations coordinate to generate anti-tumor responses following therapy can guide precise treatment prioritization. We performed systematic dissection of an established adoptive cellular therapy, donor lymphocyte infusion (DLI), by analyzing 348,905 single-cell transcriptomes from 74 longitudinal bone-marrow samples of 25 patients with relapsed myeloid leukemia; a subset was evaluated by protein-based spatial analysis. In acute myelogenous leukemia (AML) responders, diverse immune cell types within the bone-marrow microenvironment (BME) were predicted to interact with a clonally expanded population of ZNF683 + GZMB + CD8+ cytotoxic T lymphocytes (CTLs) which demonstrated in vitro specificity for autologous leukemia. This population, originating predominantly from the DLI product, expanded concurrently with NK and B cells. AML nonresponder BME revealed a paucity of crosstalk and elevated TIGIT expression in CD8+ CTLs. Our study highlights recipient BME differences as a key determinant of effective anti-leukemia response and opens new opportunities to modulate cell-based leukemia-directed therapy.

4.
bioRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38076932

ABSTRACT

Pooled optical screens have enabled the study of cellular interactions, morphology, or dynamics at massive scale, but have not yet leveraged the power of highly-plexed single-cell resolved transcriptomic readouts to inform molecular pathways. Here, we present Perturb-FISH, which bridges these approaches by combining imaging spatial transcriptomics with parallel optical detection of in situ amplified guide RNAs. We show that Perturb-FISH recovers intracellular effects that are consistent with Perturb-seq results in a screen of lipopolysaccharide response in cultured monocytes, and uncover new intercellular and density-dependent regulation of the innate immune response. We further pair Perturb-FISH with a functional readout in a screen of autism spectrum disorder risk genes, showing common calcium activity phenotypes in induced pluripotent stem cell derived astrocytes and their associated genetic interactions and dysregulated molecular pathways. Perturb-FISH is thus a generally applicable method for studying the genetic and molecular associations of spatial and functional biology at single-cell resolution.

5.
bioRxiv ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38106230

ABSTRACT

Emerging imaging spatial transcriptomics (iST) platforms and coupled analytical methods can recover cell-to-cell interactions, groups of spatially covarying genes, and gene signatures associated with pathological features, and are thus particularly well-suited for applications in formalin fixed paraffin embedded (FFPE) tissues. Here, we benchmarked the performance of three commercial iST platforms on serial sections from tissue microarrays (TMAs) containing 23 tumor and normal tissue types for both relative technical and biological performance. On matched genes, we found that 10x Xenium shows higher transcript counts per gene without sacrificing specificity, but that all three platforms concord to orthogonal RNA-seq datasets and can perform spatially resolved cell typing, albeit with different false discovery rates, cell segmentation error frequencies, and with varying degrees of sub-clustering for downstream biological analyses. Taken together, our analyses provide a comprehensive benchmark to guide the choice of iST method as researchers design studies with precious samples in this rapidly evolving field.

6.
iScience ; 26(7): 106995, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37534135

ABSTRACT

Emerging evidence of species divergent features of astrocytes coupled with the relative inaccessibility of human brain tissue underscore the utility of human pluripotent stem cell (hPSC) technologies for the generation and study of human astrocytes. However, existing approaches for hPSC-astrocyte generation are typically lengthy or require intermediate purification steps. Here, we establish a rapid and highly scalable method for generating functional human induced astrocytes (hiAs). These hiAs express canonical astrocyte markers, respond to pro-inflammatory stimuli, exhibit ATP-induced calcium transients and support neuronal network development. Moreover, single-cell transcriptomic analyses reveal the generation of highly reproducible cell populations across individual donors, mostly resembling human fetal astrocytes. Finally, hiAs generated from a trisomy 21 disease model identify expected alterations in cell-cell adhesion and synaptic signaling, supporting their utility for disease modeling applications. Thus, hiAs provide a valuable and practical resource for the study of basic human astrocyte function and dysfunction in disease.

7.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37267161

ABSTRACT

MOTIVATION: Imaging Spatial Transcriptomics techniques characterize gene expression in cells in their native context by imaging barcoded probes for mRNA with single molecule resolution. However, the need to acquire many rounds of high-magnification imaging data limits the throughput and impact of existing methods. RESULTS: We describe the Joint Sparse method for Imaging Transcriptomics, an algorithm for decoding lower magnification Imaging Spatial Transcriptomics data than that used in standard experimental workflows. Joint Sparse method for Imaging Transcriptomics incorporates codebook knowledge and sparsity assumptions into an optimization problem, which is less reliant on well separated optical signals than current pipelines. Using experimental data obtained by performing Multiplexed Error-Robust Fluorescence in situ Hybridization on tissue from mouse brain, we demonstrate that Joint Sparse method for Imaging Transcriptomics enables improved throughput and recovery performance over standard decoding methods. AVAILABILITY AND IMPLEMENTATION: Software implementation of JSIT, together with example files, is available at https://github.com/jpbryan13/JSIT.


Subject(s)
Gene Expression Profiling , Transcriptome , Animals , Mice , In Situ Hybridization, Fluorescence/methods , Gene Expression Profiling/methods , Software , Algorithms
8.
Cell Rep ; 42(1): 111988, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36640364

ABSTRACT

The maturation of neurons and the development of synapses, although emblematic of neurons, also relies on interactions with astrocytes and other glia. Here, to study the role of glia-neuron interactions, we analyze the transcriptomes of human pluripotent stem cell (hPSC)-derived neurons, from 80 human donors, that were cultured with or without contact with glial cells. We find that the presence of astrocytes enhances synaptic gene-expression programs in neurons when in physical contact with astrocytes. These changes in neurons correlate with increased expression, in the cocultured glia, of genes that encode synaptic cell adhesion molecules. Both the neuronal and astrocyte gene-expression programs are enriched for genes associated with schizophrenia risk. Our results suggest that astrocyte-expressed genes with synaptic functions are associated with stronger expression of synaptic genetic programs in neurons, and they suggest a potential role for astrocyte-neuron interactions in schizophrenia.


Subject(s)
Astrocytes , Schizophrenia , Humans , Astrocytes/metabolism , Cell Adhesion/genetics , Schizophrenia/genetics , Schizophrenia/metabolism , Neurons/metabolism , Neuroglia , Synapses/physiology
9.
Nature ; 608(7924): 750-756, 2022 08.
Article in English | MEDLINE | ID: mdl-35948630

ABSTRACT

Microglia are specialized macrophages in the brain parenchyma that exist in multiple transcriptional states and reside within a wide range of neuronal environments1-4. However, how and where these states are generated remains poorly understood. Here, using the mouse somatosensory cortex, we demonstrate that microglia density and molecular state acquisition are determined by the local composition of pyramidal neuron classes. Using single-cell and spatial transcriptomic profiling, we unveil the molecular signatures and spatial distributions of diverse microglia populations and show that certain states are enriched in specific cortical layers, whereas others are broadly distributed throughout the cortex. Notably, conversion of deep-layer pyramidal neurons to an alternate class identity reconfigures the distribution of local, layer-enriched homeostatic microglia to match the new neuronal niche. Leveraging the transcriptional diversity of pyramidal neurons in the neocortex, we construct a ligand-receptor atlas describing interactions between individual pyramidal neuron subtypes and microglia states, revealing rules of neuron-microglia communication. Our findings uncover a fundamental role for neuronal diversity in instructing the acquisition of microglia states as a potential mechanism for fine-tuning neuroimmune interactions within the cortical local circuitry.


Subject(s)
Microglia , Neocortex , Pyramidal Cells , Somatosensory Cortex , Animals , Cell Count , Mice , Microglia/classification , Microglia/physiology , Neocortex/cytology , Neocortex/physiology , Pyramidal Cells/classification , Pyramidal Cells/physiology , Single-Cell Analysis , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , Transcriptome
10.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Article in English | MEDLINE | ID: mdl-35902743

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Gene Expression Profiling , Humans , Neoadjuvant Therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Prognosis , Transcriptome/genetics , Pancreatic Neoplasms
12.
Nat Methods ; 19(3): 311-315, 2022 03.
Article in English | MEDLINE | ID: mdl-34824477

ABSTRACT

Highly multiplexed tissue imaging makes detailed molecular analysis of single cells possible in a preserved spatial context. However, reproducible analysis of large multichannel images poses a substantial computational challenge. Here, we describe a modular and open-source computational pipeline, MCMICRO, for performing the sequential steps needed to transform whole-slide images into single-cell data. We demonstrate the use of MCMICRO on tissue and tumor images acquired using multiple imaging platforms, thereby providing a solid foundation for the continued development of tissue imaging software.


Subject(s)
Image Processing, Computer-Assisted , Neoplasms , Diagnostic Imaging , Humans , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Software
14.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34233165

ABSTRACT

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Subject(s)
Microglia/metabolism , Neural Inhibition/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Behavior, Animal , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Parvalbumins/metabolism , Phenotype , Receptors, GABA-B/metabolism , Synapses/physiology , Transcription, Genetic
15.
Nature ; 569(7756): 413-417, 2019 05.
Article in English | MEDLINE | ID: mdl-31043747

ABSTRACT

A technology that simultaneously records membrane potential from multiple neurons in behaving animals will have a transformative effect on neuroscience research1,2. Genetically encoded voltage indicators are a promising tool for these purposes; however, these have so far been limited to single-cell recordings with a marginal signal-to-noise ratio in vivo3-5. Here we developed improved near-infrared voltage indicators, high-speed microscopes and targeted gene expression schemes that enabled simultaneous in vivo recordings of supra- and subthreshold voltage dynamics in multiple neurons in the hippocampus of behaving mice. The reporters revealed subcellular details of back-propagating action potentials and correlations in subthreshold voltage between multiple cells. In combination with stimulation using optogenetics, the reporters revealed changes in neuronal excitability that were dependent on the behavioural state, reflecting the interplay of excitatory and inhibitory synaptic inputs. These tools open the possibility for detailed explorations of network dynamics in the context of behaviour. Fig. 1 PHOTOACTIVATED QUASAR3 (PAQUASAR3) REPORTS NEURONAL ACTIVITY IN VIVO.: a, Schematic of the paQuasAr3 construct. b, Photoactivation by blue light enhanced voltage signals excited by red light in cultured neurons that expressed paQuasAr3 (representative example of n = 4 cells). c, Model of the photocycle of paQuasAr3. d, Confocal images of sparsely expressed paQuasAr3 in brain slices. Scale bars, 50 µm. Representative images, experiments were repeated in n = 3 mice. e, Simultaneous fluorescence and patch-clamp recordings from a neuron expressing paQuasAr3 in acute brain slice. Top, magnification of boxed regions. Schematic shows brain slice, patch pipette and microscope objective. f, Simultaneous fluorescence and patch-clamp recordings of inhibitory post synaptic potentials in an L2-3 neuron induced by electrical stimulation of L5-6 in acute slice. g, Normalized change in fluorescence (ΔF/F) and SNR of optically recorded post-synaptic potentials (PSPs) as a function of the amplitude of the post-synaptic potentials. The voltage sensitivity was ΔF/F = 40 ± 1.7% per 100 mV. The SNR was 0.93 ± 0.07 per 1 mV in a 1-kHz bandwidth (n = 42 post-synaptic potentials from 5 cells, data are mean ± s.d.). Schematic shows brain slice, patch pipette, field stimulation electrodes and microscope objective. h, Optical measurements of paQuasAr3 fluorescence in the CA1 region of the hippocampus (top) and glomerular layer of the olfactory bulb (bottom) of anaesthetized mice (representative traces from n = 7 CA1 cells and n = 13 olfactory bulb cells, n = 3 mice). Schematics show microscope objective and the imaged brain region. i, STA fluorescence from 88 spikes in a CA1 oriens neuron. j, Frames from the STA video showing the delay in the back-propagating action potential in the dendrites relative to the soma. k, Sub-Nyquist fitting of the action potential delay and width shows electrical compartmentalization in the dendrites. Experiments in k-m were repeated in n = 2 cells from n = 2 mice.


Subject(s)
Action Potentials , Hippocampus/cytology , Hippocampus/physiology , Optogenetics/methods , Algorithms , Animals , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacteriorhodopsins/genetics , Bacteriorhodopsins/metabolism , Cells, Cultured , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/metabolism , Walking
16.
J Neurosci ; 39(25): 4889-4908, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30952812

ABSTRACT

Optical tools for simultaneous perturbation and measurement of neural activity open the possibility of mapping neural function over wide areas of brain tissue. However, spectral overlap of actuators and reporters presents a challenge for their simultaneous use, and optical scattering and out-of-focus fluorescence in tissue degrade resolution. To minimize optical crosstalk, we combined an optimized variant (eTsChR) of the most blue-shifted channelrhodopsin reported to-date with a nuclear-localized red-shifted Ca2+ indicator, H2B-jRGECO1a. To perform wide-area optically sectioned imaging in tissue, we designed a structured illumination technique that uses Hadamard matrices to encode spatial information. By combining these molecular and optical approaches we made wide-area functional maps in acute brain slices from mice of both sexes. The maps spanned cortex and striatum and probed the effects of antiepileptic drugs on neural excitability and the effects of AMPA and NMDA receptor blockers on functional connectivity. Together, these tools provide a powerful capability for wide-area mapping of neuronal excitability and functional connectivity in acute brain slices.SIGNIFICANCE STATEMENT A new technique for simultaneous optogenetic stimulation and calcium imaging across wide areas of brain slice enables high-throughput mapping of neuronal excitability and synaptic transmission.


Subject(s)
Anticonvulsants/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Optical Imaging/methods , Synaptic Transmission/drug effects , Action Potentials/drug effects , Animals , HEK293 Cells , Humans , Mice , Nerve Net/drug effects , Optogenetics , Photic Stimulation , Rats
17.
Nat Neurosci ; 21(6): 776-778, 2018 06.
Article in English | MEDLINE | ID: mdl-29802389

Subject(s)
Brain
18.
Nat Chem Biol ; 12(8): 586-92, 2016 08.
Article in English | MEDLINE | ID: mdl-27272565

ABSTRACT

Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining body weight and energy stores. Using a mouse model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we found that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B. Biochemical studies of the copper-PDE3B interaction establish copper-dependent inhibition of enzyme activity and identify a key conserved cysteine residue in a PDE3-specific loop that is essential for the observed copper-dependent lipolytic phenotype.


Subject(s)
Copper/pharmacology , Cyclic AMP/metabolism , Lipolysis/drug effects , Phosphodiesterase 3 Inhibitors/pharmacology , 3T3-L1 Cells , Animals , Cyclic Nucleotide Phosphodiesterases, Type 3/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Dose-Response Relationship, Drug , Mice , Molecular Structure , Structure-Activity Relationship
19.
J Neurosci ; 36(8): 2458-72, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26911693

ABSTRACT

Optical imaging of voltage indicators based on green fluorescent proteins (FPs) or archaerhodopsin has emerged as a powerful approach for detecting the activity of many individual neurons with high spatial and temporal resolution. Relative to green FP-based voltage indicators, a bright red-shifted FP-based voltage indicator has the intrinsic advantages of lower phototoxicity, lower autofluorescent background, and compatibility with blue-light-excitable channelrhodopsins. Here, we report a bright red fluorescent voltage indicator (fluorescent indicator for voltage imaging red; FlicR1) with properties that are comparable to the best available green indicators. To develop FlicR1, we used directed protein evolution and rational engineering to screen libraries of thousands of variants. FlicR1 faithfully reports single action potentials (∼3% ΔF/F) and tracks electrically driven voltage oscillations at 100 Hz in dissociated Sprague Dawley rat hippocampal neurons in single trial recordings. Furthermore, FlicR1 can be easily imaged with wide-field fluorescence microscopy. We demonstrate that FlicR1 can be used in conjunction with a blue-shifted channelrhodopsin for all-optical electrophysiology, although blue light photoactivation of the FlicR1 chromophore presents a challenge for applications that require spatially overlapping yellow and blue excitation.


Subject(s)
Fluorescent Dyes/analysis , Hippocampus/chemistry , Hippocampus/physiology , Luminescent Proteins/analysis , Neurons/chemistry , Neurons/physiology , Animals , Animals, Newborn , Cells, Cultured , Female , HEK293 Cells , HeLa Cells , Humans , Male , Microscopy, Fluorescence/methods , Organ Culture Techniques/methods , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction/methods , Red Fluorescent Protein
20.
Chem Sci ; 6(3): 1701-1705, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25705368

ABSTRACT

Sorting of target cells from a heterogeneous pool is technically difficult when the selection criterion is complex, e.g. a dynamic response, a morphological feature, or a combination of multiple parameters. At present, mammalian cell selections are typically performed either via static fluorescence (e.g. fluorescence activated cell sorter), via survival (e.g. antibiotic resistance), or via serial operations (flow cytometry, laser capture microdissection). Here we present a simple protocol for selecting cells based on any static or dynamic property that can be identified by video microscopy and image processing. The "photostick" technique uses a cell-impermeant photochemical crosslinker and digital micromirror array-based patterned illumination to immobilize selected cells on the culture dish. Other cells are washed away with mild protease treatment. The crosslinker also labels the selected cells with a fluorescent dye and a biotin for later identification. The photostick protocol preserves cell viability, permits genetic profiling of selected cells, and can be performed with complex functional selection criteria such as neuronal firing patterns.

SELECTION OF CITATIONS
SEARCH DETAIL
...