Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Food Res Int ; 186: 114322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729712

ABSTRACT

Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.


Subject(s)
Colitis , Cultured Milk Products , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus delbrueckii , Animals , Gastrointestinal Microbiome/drug effects , Colitis/microbiology , Colitis/chemically induced , Colitis/metabolism , Colitis/drug therapy , Lactobacillus delbrueckii/metabolism , Cultured Milk Products/microbiology , Mice , Probiotics/therapeutic use , Male , Mice, Inbred C57BL , Disease Models, Animal , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Inflammation , Colon/microbiology , Colon/metabolism , Lactobacillus
2.
Sci Rep ; 14(1): 11576, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773133

ABSTRACT

Despite presenting a worse prognosis and being associated with highly aggressive tumors, triple-negative breast cancer (TNBC) is characterized by the higher frequency of tumor-infiltrating lymphocytes, which have been implicated in better overall survival and response to therapy. Though recent studies have reported the capacity of B lymphocytes to recognize overly-expressed normal proteins, and tumor-associated antigens, how tumor development potentially modifies B cell response is yet to be elucidated. Our findings reveal distinct effects of 4T1 and E0771 murine tumor development on B cells in secondary lymphoid organs. Notably, we observe a significant expansion of total B cells and plasma cells in the tumor-draining lymph nodes (tDLNs) as early as 7 days after tumor challenge in both murine models, whereas changes in the spleen are less pronounced. Surprisingly, within the tumor microenvironment (TME) of both models, we detect distinct B cell subpopulations, but tumor development does not appear to cause major alterations in their frequency over time. Furthermore, our investigation into B cell regulatory phenotypes highlights that the B10 Breg phenotype remains unaffected in the evaluated tissues. Most importantly, we identified an increase in CD19 + LAG-3 + cells in tDLNs of both murine models. Interestingly, although CD19 + LAG-3 + cells represent a minor subset of total B cells (< 3%) in all evaluated tissues, most of these cells exhibit elevated expression of IgD, suggesting that LAG-3 may serve as an activation marker for B cells. Corroborating with these findings, we detected distinct cell cycle and proliferation genes alongside LAG-3 analyzing scRNA-Seq data from a cohort of TNBC patients. More importantly, our study suggests that the presence of LAG-3 B cells in breast tumors could be associated with a good prognosis, as patients with higher levels of LAG-3 B cell transcripts had a longer progression-free interval (PFI). This novel insight could pave the way for targeted therapies that harness the unique properties of LAG-3 + B cells, potentially offering new avenues for improving patient outcomes in TNBC. Further research is warranted to unravel the mechanistic pathways of these cells and to validate their prognostic value in larger, diverse patient cohorts.


Subject(s)
Triple Negative Breast Neoplasms , Tumor Microenvironment , Animals , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/genetics , Female , Mice , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Cell Line, Tumor , Lymphocyte Activation Gene 3 Protein , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Antigens, CD/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Lymph Nodes/pathology , Spleen/immunology , Spleen/metabolism , Spleen/pathology , Mice, Inbred BALB C
3.
Front Microbiol ; 15: 1309160, 2024.
Article in English | MEDLINE | ID: mdl-38680913

ABSTRACT

Introduction and objective: p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods: This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion: No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.

4.
J Leukoc Biol ; 115(3): 483-496, 2024 02 23.
Article in English | MEDLINE | ID: mdl-37947010

ABSTRACT

Gut dysbiosis is linked to type 1 diabetes mellitus (T1D). Inulin (INU), a prebiotic, modulates the gut microbiota, promoting beneficial bacteria that produce essential short-chain fatty acids for immune regulation. However, how INU affects T1D remains uncertain. Using a streptozotocin-induced (STZ) mouse model, we studied INU's protective effects. Remarkably, STZ + INU mice resisted T1D, with none developing the disease. They had lower blood glucose, reduced pancreatic inflammation, and normalized serum insulin compared with STZ + SD mice. STZ + INU mice also had enhanced mucus production, abundant Bifidobacterium, Clostridium cluster IV, Akkermansia muciniphila, and increased fecal butyrate. In cecal lymph nodes, we observed fewer CD4+Foxp3+ regulatory T cells expressing CCR4 and more Foxp3+CCR4+ cells in pancreatic islets, with higher CCL17 expression. This phenotype was absent in CCR4-deficient mice on INU. INU supplementation effectively protects against experimental T1D by recruiting CCR4+ regulatory T cells via CCL17 into the pancreas and altering the butyrate-producing microbiota.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Islets of Langerhans , Mice , Animals , Inulin/pharmacology , Prebiotics , Disease Models, Animal , T-Lymphocytes, Regulatory , Butyrates/pharmacology , Forkhead Transcription Factors
6.
Sci Rep ; 13(1): 16358, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773430

ABSTRACT

Chronic consumption of hyperpalatable and hypercaloric foods has been pointed out as a factor associated with cognitive decline and memory impairment in obesity. In this context, the integration between peripheral and central inflammation may play a significant role in the negative effects of an obesogenic environment on memory. However, little is known about how obesity-related peripheral inflammation affects specific neurotransmission systems involved with memory regulation. Here, we test the hypothesis that chronic exposure to a highly palatable diet may cause neuroinflammation, glutamatergic dysfunction, and memory impairment. For that, we exposed C57BL/6J mice to a high sugar and butter diet (HSB) for 12 weeks, and we investigated its effects on behavior, glial reactivity, blood-brain barrier permeability, pro-inflammatory features, glutamatergic alterations, plasticity, and fractalkine-CX3CR1 axis. Our results revealed that HSB diet induced a decrease in memory reconsolidation and extinction, as well as an increase in hippocampal glutamate levels. Although our data indicated a peripheral pro-inflammatory profile, we did not observe hippocampal neuroinflammatory features. Furthermore, we also observed that the HSB diet increased hippocampal fractalkine levels, a key chemokine associated with neuroprotection and inflammatory regulation. Then, we hypothesized that the elevation on glutamate levels may saturate synaptic communication, partially limiting plasticity, whereas fractalkine levels increase as a strategy to decrease glutamatergic damage.


Subject(s)
Chemokine CX3CL1 , Hippocampus , Animals , Mice , Chemokine CX3CL1/metabolism , Diet, High-Fat/adverse effects , Hippocampus/metabolism , Inflammation/complications , Mice, Inbred C57BL , Obesity/complications , Excitatory Amino Acid Agents
7.
Immunol Lett ; 260: 73-80, 2023 08.
Article in English | MEDLINE | ID: mdl-37315848

ABSTRACT

Shrimp is among the most sensitizing food allergens and has been associated with many anaphylaxis reactions. However, there is still a shortage of studies that enable a systematic understanding of this disease and the investigation of new therapeutic approaches. This study aimed to develop a new experimental model of shrimp allergy that could enable the evaluation of new prophylactic treatments. BALB/c mice were subcutaneously sensitized with 100 µg of shrimp proteins of Litopenaeus vannamei adsorbed in 1 mg of aluminum hydroxide on day 0, and a booster (100 µg of shrimp proteins only) on day 14. The oral challenge protocol was based on the addition of 5 mg/ml of shrimp proteins to water from day 21 to day 35. Analysis of shrimp extract content detected at least 4 of the major allergens reported to L. vannamei. In response to the sensitization, allergic mice showed significantly enhanced IL-4 and IL-10 production in restimulated cervical draining lymph node cells. High detection of serum anti-shrimp IgE and IgG1 suggested the development of allergies to shrimp while Passive Cutaneous Anaphylaxis assay revealed an IgE-mediated response. Immunoblotting analysis revealed that Allergic mice developed antibodies to multiple antigens present in the shrimp extract. These observations were supported by the detection of anti-shrimp IgA production in intestinal lavage samples and morphometric intestinal mucosal changes. Therefore, this experimental protocol can be a tool to evaluate prophylactic and therapeutic approaches.


Subject(s)
Anaphylaxis , Food Hypersensitivity , Animals , Mice , Immunoglobulin E , Allergens , Plant Extracts
8.
Front Nutr ; 10: 1141655, 2023.
Article in English | MEDLINE | ID: mdl-37063320

ABSTRACT

Introduction: Mechanisms that dictate the preference for ethanol and its addiction are not only restricted to the central nervous system (CNS). An increasing body of evidence has suggested that abusive ethanol consumption directly affects the immune system, which in turn interacts with the CNS, triggering neuronal responses and changes, resulting in dependence on the drug. It is known that neuroinflammation and greater immune system reactivity are observed in behavioral disorders and that these can regulate gene transcription. However, there is little information about these findings of the transcriptional profile of reward system genes in high consumption and alcohol preference. In this regard, there is a belief that, in the striatum, an integrating region of the brain reward system, the interaction of the immune response and the transcriptional profile of the Lrrk2 gene that is associated with loss of control and addiction to ethanol may influence the alcohol consumption and preference. Given this information, this study aimed to assess whether problematic alcohol consumption affects the transcriptional profile of the Lrrk2 gene, neuroinflammation, and behavior and whether these changes are interconnected. Methods: An animal model developed by our research group has been used in which male C57BL/6 mice and knockouts for the Il6 and Nfat genes were subjected to a protocol of high fat and sugar diet intake and free choice of ethanol in the following stages: Stage 1 (T1)-Dietary treatment, for 8 weeks, in which the animals receive high-calorie diet, High Sugar and Butter (HSB group), or standard diet, American Institute of Nutrition 93-Growth (AIN93G group); and Stage 2 (T2)-Ethanol consumption, in which the animals are submitted, for 4 weeks, to alcohol within the free choice paradigm, being each of them divided into 10 groups, four groups continued with the same diet and in the other six the HSB diet is substituted by the AIN93G diet. Five groups had access to only water, while the five others had a free choice between water and a 10% ethanol solution. The weight of the animals was evaluated weekly and the consumption of water and ethanol daily. At the end of the 12-week experiment, anxiety-like behavior was evaluated by the light/dark box test; compulsive-like behavior by Marble burying, transcriptional regulation of genes Lrrk2, Tlr4, Nfat, Drd1, Drd2, Il6, Il1ß, Il10, and iNOS by RT-qPCR; and inflammatory markers by flow cytometry. Animals that the diet was replaced had an ethanol high preference and consumption. Results and discussion: We observed that high consumption and preference for ethanol resulted in (1) elevation of inflammatory cells in the brain, (2) upregulation of genes associated with cytokines (Il6 and Il1ß) and pro-inflammatory signals (iNOS and Nfat), downregulation of anti-inflammatory cytokine (Il10), dopamine receptor (Drd2), and the Lrrk2 gene in the striatum, and (3) behavioral changes such as decreased anxiety-like behavior, and increased compulsive-like behavior. Our findings suggest that interactions between the immune system, behavior, and transcriptional profile of the Lrrk2 gene influence the ethanol preferential and abusive consumption.

9.
Braz J Microbiol ; 54(2): 1203-1215, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36821043

ABSTRACT

Inflammatory bowel diseases (IBD) are gastrointestinal disorders characterized by a breakdown in intestinal homeostasis by inflammatory immune responses to luminal antigens. Novel strategies for ameliorating IBD have been proposed in many studies using animal models. Our group has demonstrated that administration of Lactococcus lactis NCDO 2118 can improve clinical parameters of colitis induced by oral administration of dextran sulphate sodium (DSS). However, it is not clear whether other strains of L. lactis can yield the same effect. The objective of present study was to analyze the effects of three different L. lactis strains (NCDO2118, IL1403 and MG1363) in the development of DSS-induced colitis in C57BL/6 mice. Acute colitis was induced in C57/BL6 mice by the administration of 2% DSS during 7 consecutive days. Body weight loss and shortening of colon length were observed in DSS-treated mice, and none of L. lactis strains had an impact in these clinical signs of colitis. On the other hand, all strains improved the global macroscopical disease index and prevented goblet cells depletion as well as the increase of intestinal permeability. TNF-α production was reduced in gut mucosa of L. lactis DSS-treated mice indicating a modulation of a critical pro-inflammatory response by all strains tested. However, only L. lactis NCDO2118 and MG1363 induced a higher frequency of CD11c+CD11b-CD103+ tolerogenic dendritic cells in lymphoid organs of mice at steady state. We conclude that all tested strains of L. lactis improved the clinical scores and parameters of colitis, which confirm their anti-inflammatory properties in this model of colitis.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Lactococcus lactis , Animals , Mice , Lactococcus lactis/genetics , Mice, Inbred C57BL , Colitis/chemically induced , Inflammatory Bowel Diseases/chemically induced , Immunity , Disease Models, Animal
10.
Cells ; 11(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36496970

ABSTRACT

Gout is a painful form of inflammatory arthritis characterized by the deposition of monosodium urate (MSU) crystals in the joints. The aim of this study was to investigate the effect of peptide P140 on the inflammatory responses in crystal-induced mouse models of gout and cell models including MSU-treated human cells. Injection of MSU crystals into the knee joint of mice induced neutrophil influx and inflammatory hypernociception. Injection of MSU crystals subcutaneously into the hind paw induced edema and increased pro-inflammatory cytokines levels. Treatment with P140 effectively reduced hypernociception, the neutrophil influx, and pro-inflammatory cytokine levels in these experimental models. Furthermore, P140 modulated neutrophils chemotaxis in vitro and increased apoptosis pathways through augmented caspase 3 activity and reduced NFκB phosphorylation. Moreover, P140 increased the production of the pro-resolving mediator annexin A1 and decreased the expression of the autophagy-related ATG5-ATG12 complex and HSPA8 chaperone protein. Overall, these findings suggest that P140 exerts a significant beneficial effect in a neutrophilic inflammation observed in the model of gout that can be of special interest in the design of new therapeutic strategies.


Subject(s)
Arthritis, Gouty , Gout , Mice , Humans , Animals , Uric Acid , Phosphopeptides/pharmacology , Gout/drug therapy , Gout/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Neutrophils/metabolism , Disease Models, Animal , Arthritis, Gouty/drug therapy
11.
Immunol Lett ; 251-252: 86-90, 2022 12.
Article in English | MEDLINE | ID: mdl-36309158

ABSTRACT

The intestine is not a homogeneous organ, but rather organized spaces with specific niches and microenvironments filled with different cell types that are involved in physiological and inflammatory processes. The intestinal mucosa shows a high degree of architectural complexity and intratissue specialization that occurs according to luminal composition. These intratissue specialized environments are critical for the developmental and functional adaptation of immune cells in the gut and in the gut-draining lymph nodes. In this review we discuss the compartmentalization of gut immune responses and how the lymph nodes that drain different regions of the intestine are immunologically, anatomically, and physiologically distinct. We also propose that studies on gut immunity should consider the distinctive features of intestinal segments and the differences in their draining lymph nodes to fully understand the complexity of the gut immunological scenario.


Subject(s)
Intestinal Mucosa , Lymph Nodes , Immunity , Immunity, Mucosal
12.
Front Immunol ; 13: 910807, 2022.
Article in English | MEDLINE | ID: mdl-35795656

ABSTRACT

Breast milk is considered a complete food for babies. Up to 7 days postpartum, it is known as colostrum, rich in immunological compounds, responsible for providing nutrition and ensuring immune protection. However, some maternal factors, such as gestational diabetes mellitus (GDM), can change the concentration of bioactive compounds present in the colostrum and may affect the development of the newborn's immune system. The effect of GDM on colostrum cytokine, chemokine, and growth factors is not well described. Thus, the present study evaluated whether the occurrence of GDM changes the concentration of biomarkers in the colostrum. A cross-sectional study was carried out on postpartum women who had healthy pregnancies and women who had been diagnosed with GDM. A sample of colostrum was collected for Luminex analysis. Our results showed that GDM mothers had higher secretion of cytokines and chemokines in the colostrum, with a higher concentration of IFN-g, IL-6, and IL-15, and a lower concentration of IL-1ra. Among growth factors, we identified a decreased concentration of GM-CSF in the colostrum of GDM mothers. Thus, the data obtained support the idea that the disease leads to immune alterations in the colostrum.


Subject(s)
Diabetes, Gestational , Colostrum/metabolism , Cross-Sectional Studies , Cytokines/metabolism , Female , Humans , Infant, Newborn , Milk, Human/metabolism , Postpartum Period , Pregnancy
13.
Brain Behav Immun Health ; 23: 100471, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35668724

ABSTRACT

Several antigens can act as allergens eliciting IgE-mediated food allergy reactions when fed to sensitized animals. One of them is ovalbumin (OVA) which is the main allergen in egg white. Allergic mice develop aversion to OVA consumption. This aversive behavior is associated with anxiety, and it can be transferred to non-sensitized mice by injection of serum of allergic mice. However, it is yet to be determined whether altered behavior is a general component of food allergy or whether it is specific for some types of allergens. Cow's milk allergy is the most prevalent food allergy that usually begins early in life and ß-lactoglobulin (BLG) is the milk component with the highest allergenicity. In this study, we investigated behavioral and neuroimmune circuits triggered by allergic sensitization to BLG. A neuroimmune conflict between aversion and reward was observed in a model of food allergy induced by BLG intake. Mice sensitized to BLG did not present aversive behavior when BLG was used for sensitization and oral challenge. Mice allergic to BLG preferred to drink the allergen-containing solution over water even though they had high levels of specific IgE, inflammatory cells in the intestinal mucosa and significant weight loss. When sensitized to OVA and challenged with the same antigen, mice had increased levels of neuron activation in the amygdala, a brain area related to anxiety. On the other hand, when mice were sensitized to OVA and received a mixture of BLG and OVA in the oral challenge, mice preferred to drink this mixture, despite their aversion to OVA, which was associated with neuron activation in the nucleus accumbens, an area related to reward behavior. Thus, the aversive behavior observed in food allergy to OVA does not apply to all antigens and some allergens may activate the brain reward system rather than anxiety and aversion. Our study provides novel insights into the neuroimmune conflicts regarding preference and avoidance to a common antigen associated with food allergy.

14.
Exp Gerontol ; 164: 111771, 2022 07.
Article in English | MEDLINE | ID: mdl-35351526

ABSTRACT

The ageing process is a complex phenomenon that impacts the immune system, leading to changes in the pattern of serum soluble mediators. In the present study, the serum levels of several chemokines, pro-inflammatory/regulatory cytokines and growth factors were quantified by high-throughput microbeads array in serum samples from 541 healthy subjects at distinct age ranges (3Yrs to >70Yrs). A broad increase in serum soluble mediators was observed at 6-10Yrs with subsequent decline at 11-20Yrs and 21-30Yrs followed by a second round of upregulation starting at 31-40Yrs, with a large increase at 51-60Yrs and a marked decline at age >70Yrs. Heatmap and signatures of serum soluble mediators demonstrated a bimodal profile with one peak at 6-10Yrs and a second wave around 61-70Yrs. A universal decline was observed later at age >70Yrs. In males, the second wave started earlier at 31-40Yrs with a peak at 51-60Yrs and a further smooth decline towards >70Yrs. Conversely, in females, the first peak extended from 3-5Yrs to 6-10Yrs and the second wave starting around 41-50Yrs with a peak at 61-70Yrs followed by a sharp decline at >70Yrs. Overall, CCL11, CXCL8, IL-1ß, IL-6 were underscored as universal age-related biomarkers with higher levels observed at later age ranges (after 31-40Yrs) and TNF with increased levels starting at early age ranges. Data analysis demonstrated that the highest neighborhood connectivity amongst soluble mediators occurred at 3-5Yrs, with distinct declining and strengthening rhythm in males and females. Notably, rebuilding re-arrangements were usually earlier and more frequent in females (at 11-20Yrs, 51-60Yrs and >70Yrs) than in males (at 21-30Yrs, 61-70Yrs). Overall, this study provided a comprehensive landscape of evidence portrayed by distinct waves, rhythms and dynamic network connectivity along healthy ageing with differences in magnitude and timing reported for sexes.


Subject(s)
Chemokines , Cytokines , Healthy Aging , Adolescent , Adult , Aged , Biomarkers/blood , Chemokines/blood , Child , Child, Preschool , Cytokines/blood , Female , Healthy Aging/blood , Humans , Male , Middle Aged , Young Adult
15.
Infect Immun ; 90(2): e0059521, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34807734

ABSTRACT

Ascariasis is a neglected tropical disease that is widespread in the world and has important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosae induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminths, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Thus, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosae in male mice with early ascariasis. Therefore, two mouse strains that showed different susceptibilities to ascariasis (BALB/c and C57BL/6J) when experimentally infected with 2,500 infective eggs of Ascaris suum from time point 0 were examined: the immune parasitological parameters were evaluated each 2 days after infection over a period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary secretory IgA (S-IgA) contributing to protection against early ascariasis by reducing the amount of migrating larvae as well as the influx of leukocytes in the lung and the consequent impairment of pulmonary capacity.


Subject(s)
Ascariasis , Ascaris suum , Parasites , Pneumonia , Swine Diseases , Animals , Ascaris suum/genetics , Genetic Background , Immunoglobulin A, Secretory , Male , Mice , Mice, Inbred C57BL , Swine
16.
Front Pharmacol ; 12: 755871, 2021.
Article in English | MEDLINE | ID: mdl-34955828

ABSTRACT

Mucositis is an adverse effect of cancer chemotherapies using 5-Fluorouracil (5-FU). It is characterized by mucosal inflammation, pain, diarrhea, and weight loss. Some studies reported promising healing effects of probiotic strains, when associated with prebiotics, as adjuvant treatment of mucositis. We developed a lyophilized symbiotic product, containing skimmed milk, supplemented with whey protein isolate (WPI) and with fructooligosaccharides (FOS), and fermented by Lactobacillus casei BL23, Lactiplantibacillus plantarum B7, and Lacticaseibacillus rhamnosus B1. In a mice 5-FU mucositis model, this symbiotic lyophilized formulation was able to reduce weight loss and intestinal permeability. This last was determined in vivo by quantifying blood radioactivity after oral administration of 99mTc-DTPA. Finally, histological damages caused by 5-FU-induced mucositis were monitored. Consumption of the symbiotic formulation caused a reduced score of inflammation in the duodenum, ileum, and colon. In addition, it decreased levels of pro-inflammatory cytokines IL-1ß, IL-6, IL-17, and TNF-α in the mice ileum. The symbiotic product developed in this work thus represents a promising adjuvant treatment of mucositis.

17.
PLoS Pathog ; 17(11): e1010067, 2021 11.
Article in English | MEDLINE | ID: mdl-34784389

ABSTRACT

Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.


Subject(s)
Ascariasis/immunology , Ascaris suum/immunology , Eosinophils/physiology , Immunoglobulin A, Secretory/metabolism , Pneumonia/prevention & control , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Animals , Ascariasis/metabolism , Ascariasis/parasitology , Female , Immunoglobulin A, Secretory/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/parasitology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
18.
Front Immunol ; 12: 647987, 2021.
Article in English | MEDLINE | ID: mdl-34248935

ABSTRACT

Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.


Subject(s)
Bacterial Proteins/administration & dosage , Bacterial Proteins/metabolism , Chaperonin 60/administration & dosage , Chaperonin 60/metabolism , Immune Tolerance/drug effects , Lactococcus lactis/metabolism , Leishmania braziliensis/drug effects , Leishmaniasis, Cutaneous/drug therapy , Mycobacterium leprae/enzymology , Administration, Oral , Animals , Bacterial Proteins/genetics , Chaperonin 60/genetics , Cytokines/metabolism , Female , Inflammation/drug therapy , Inflammation/immunology , Lactococcus lactis/genetics , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Mice , Mice, Inbred BALB C , Organisms, Genetically Modified/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology
19.
Protein Pept Lett ; 28(10): 1164-1179, 2021.
Article in English | MEDLINE | ID: mdl-34315363

ABSTRACT

BACKGROUND: It is well known that alcohol can trigger inflammatory effects in the gastrointestinal tract (GIT), interfering with mucosal homeostasis. OBJECTIVES: This study evaluated the effectiveness of Lactococcus lactis treatment in controlling the increase in molecular biomarkers related to allergic inflammation and the effect on the diversity and abundance of the Enterobacteriaceae family in the GIT after high-dose acute administration of ethanol. METHODS: Mice received ethanol or saline solution by gavage for four consecutive days, and 24 h after the last administration, the animals were given L. lactis or M17 broth orally ad libitum for two consecutive days. The animals were subsequently sacrificed and dissected. RESULTS: L. lactis treatment was able to restore basal levels of secretory immunoglobulin A in the gastric mucosa, serum total immunoglobulin E, interleukin (IL)-4 production in gastric and intestinal tissues, and IL-10 levels in gastric tissue. L. lactis treatment encouraged the diversification of the Enterobacteriaceae population, particularly the commensal species, in the GIT. CONCLUSION: This research opens a field of studies regarding the modulatory effect of L. lactis on immunological and microbial changes induced after alcohol intake.


Subject(s)
Enterobacteriaceae/metabolism , Ethanol/metabolism , Immunoglobulin E/metabolism , Interleukin-4/metabolism , Lactococcus lactis/metabolism , Administration, Oral , Alcohol Drinking , Animals , Cytokines/metabolism , Ethanol/administration & dosage , Female , Gastrointestinal Tract , Humans , Immunoglobulin A/metabolism , Immunoglobulin E/blood , Inflammation/metabolism , Interleukin-4/blood , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL
20.
J Nutr Biochem ; 92: 108622, 2021 06.
Article in English | MEDLINE | ID: mdl-33705942

ABSTRACT

The high prevalence of obesity and associated metabolic disorders are one of the major public health problems worldwide. Among the main causal factors of obesity, excessive consumption of food rich in sugar and fat stands out due to its high energy density. The regulation of food intake relies on hypothalamic control by the action of several neuropeptides. Excessive consumption of hypercaloric diets has impact in the behavior and in the gut microbiota. In the present study, we used a high-sugar and fat (HSB) diet for 12 weeks to induce obesity in C57BL/6 mice and to investigate its effects on the gut microbiota, hypothalamic peptides, and behavior. We hypothesize that chronic consumption of HSB diet can change the behavior. Additionally, we also hypothesize that changes in gut microbiota can be associated with changes in the transcriptional regulation of hypothalamic peptides and behavior. To evaluate the gut microbiota, we performed the sequencing of 16S rRNA gene, which demonstrate that HSB diet modulates the gut microbiota with an increase in the Firmicutes and Actinobacteria phylum and a decrease of Bacteroidetes phylum. The real time qPCR revealed that HSB-fed mice presented changes in the transcriptional regulation of hypothalamic neuropeptides genes such as Npy, Gal and Galr1. The Marble-burying and Light/dark box tests also showed an alteration in anxiety and impulsive behaviors for the HSB-fed mice. Our data provides evidence that obesity induced by HSB diet consumption is associated with alterations in gut microbiota and behavior, highlighting the multifactorial characteristics of this disease.


Subject(s)
Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome , Obesity/etiology , Obesity/microbiology , Actinobacteria/genetics , Actinobacteria/isolation & purification , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Firmicutes/genetics , Firmicutes/isolation & purification , Male , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...