Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Mol Biotechnol ; 63(11): 983-991, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34165770

ABSTRACT

Schistosomiasis causes significant morbidity and mortality. Vaccine efforts to date indicate the need to increase the immunogenicity of Schistosoma antigens. The multiple antigen-presenting system, whereby proteins are genetically fused to rhizavidin and affinity linked to biotinylated templates, enables the generation of robust immune responses. The objective of this work was to express and purify the S. mansoni antigens, SmTSP-2 and SmCD59.2, in fusion with rhizavidin. The fusion with rhizavidin greatly decreased the expression level of rSmTSP-2, but not rSmCD59.2, and both were expressed in the insoluble fraction, requiring optimization of culture conditions. Evaluation of different E. coli strains and media showed that BL21-DE3 cultured in Terrific Broth provided the highest expression levels of both proteins. Investigation of a range of time and temperature of induction showed that E. coli strains expressing rRzv:SmTSP-2 and rRzv:SmCD59.2 showed the highest protein production at 23 °C for 15 h. Recombinant proteins were purified by a single step of affinity chromatography allowing isolation of these proteins in high concentration and purity. The optimization process increased final soluble protein yield of rRzv:SmTSP-2 by fourfold and rRzv:SmCD59.2 by tenfold, providing ~ 20 mg/L of each protein. Optimized fusion protein production will allow antigen use in biotin-rhizavidin affinity platforms.


Subject(s)
Antigens, Helminth/biosynthesis , Bacterial Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Schistosoma mansoni/metabolism , Schistosomiasis mansoni/immunology , Animals , Antigens, Helminth/genetics , Antigens, Helminth/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Chromatography, Affinity/methods , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Schistosoma mansoni/chemistry , Schistosoma mansoni/immunology , Schistosoma mansoni/isolation & purification , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology
2.
Mol Biotechnol, v. 63, p. 983–991, jun. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3868

ABSTRACT

Schistosomiasis causes significant morbidity and mortality. Vaccine efforts to date indicate the need to increase the immunogenicity of Schistosoma antigens. The multiple antigen-presenting system, whereby proteins are genetically fused to rhizavidin and affinity linked to biotinylated templates, enables the generation of robust immune responses. The objective of this work was to express and purify the S. mansoni antigens, SmTSP-2 and SmCD59.2, in fusion with rhizavidin. The fusion with rhizavidin greatly decreased the expression level of rSmTSP-2, but not rSmCD59.2, and both were expressed in the insoluble fraction, requiring optimization of culture conditions. Evaluation of different E. coli strains and media showed that BL21-DE3 cultured in Terrific Broth provided the highest expression levels of both proteins. Investigation of a range of time and temperature of induction showed that E. coli strains expressing rRzv:SmTSP-2 and rRzv:SmCD59.2 showed the highest protein production at 23 °C for 15 h. Recombinant proteins were purified by a single step of affinity chromatography allowing isolation of these proteins in high concentration and purity. The optimization process increased final soluble protein yield of rRzv:SmTSP-2 by fourfold and rRzv:SmCD59.2 by tenfold, providing ~ 20 mg/L of each protein. Optimized fusion protein production will allow antigen use in biotin–rhizavidin affinity platforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...