Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 77: 672-679, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28532078

ABSTRACT

Bacterial cellulose membrane is a biomaterial with high value in the biomedical field. Many groups have been making efforts to promote chemical modifications of its structure and, consequently, add new characteristics. Recently, our group has developed a methodology to insert monoester succinic acid in bacterial cellulose membrane without disrupting the microfibril network and bind a protein on it. Considering the role of carbohydrates in the molecular recognition process in biological events, we continued these studies by inserting covalently multiples copies of aryl monosaccharide to bacterial cellulose succinylated and to study the in vitro tissue compatibility using fibroblasts. The mix of synthetical chemistry and material modification was performed to prepare aminoaryl mannoside and conjugate it, via amide bond using ultrasonic irradiation, to succinic group of bacterial cellulose. This material was characterized chemically (IR, UV-vis, 13C NMR CP-MAS) and physically (TGA and AFM). Mannosylated cellulose showed good in vitro compatibility with fibroblasts demonstrating its potential in the tissue engineering field which could provide a tissue compatible scaffold.


Subject(s)
Fibroblasts , Biocompatible Materials , Cellulose , Tissue Engineering , Tissue Scaffolds
2.
Int J Biol Macromol ; 67: 401-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24704166

ABSTRACT

In this study, the effect of the addition of hyaluronic acid (HA) on bacterial cellulose (BC) production, under static conditions was evaluated in terms of the properties of the resulting BC hybrid membranes. HA was added to the fermentation process in three distinct time points: first day (BC-T0), third day (BC-T3) and sixth day (BC-T6). Analyses of FT-IR and CP/MAS (13)C NMR confirmed the presence of HA in bacterial cellulose membranes. The crystal structure, crystallinity index (Ic) surface roughness, thermal stability and hybrophobic/hydrophilic character changed. Membranes with higher roughness were produced with HA added on the first and third day of fermentation process. The surface energy of BC/HA membranes was calculated and more hydrophilic membranes were produced by the addition of HA on the third and sixth day, also resulting in more thermally stable materials. The results demonstrate that bacterial cellulose/hyaluronic acid hybrid membranes can be produced in situ and suggest that HA interacts with the sub-elementary bacterial cellulose fibrils, changing the properties of the membranes. The study and understanding of the factors that affect those properties are of utmost importance for the safe and efficient use of BC as biomaterials in numerous applications, specifically in the biological field.


Subject(s)
Cellulose/chemistry , Hyaluronic Acid/chemistry , Membranes, Artificial , Bacteria/chemistry , Biocompatible Materials/chemistry , Cellulose/chemical synthesis , Crystallography, X-Ray , Fermentation , Hyaluronic Acid/chemical synthesis , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...