Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Front Immunol ; 15: 1391949, 2024.
Article in English | MEDLINE | ID: mdl-38765015

ABSTRACT

Dimethyl fumarate (DMF, Tecfidera) is an oral drug utilized to treat relapsing-remitting multiple sclerosis (MS). DMF treatment reduces disease activity in MS. Gastrointestinal discomfort is a common adverse effect of the treatment with DMF. This study aimed to investigate the effect of DMF administration in the gut draining lymph nodes cells of C57BL6/J female mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have demonstrated that the treatment with DMF (7.5 mg/kg) significantly reduces the severity of EAE. This reduction of the severity is accompanied by the increase of both proinflammatory and anti-inflammatory mechanisms at the beginning of the treatment. As the treatment progressed, we observed an increasing number of regulatory Foxp3 negative CD4 T cells (Tr1), and anti-inflammatory cytokines such as IL-27, as well as the reduction of PGE2 level in the mesenteric lymph nodes of mice with EAE. We provide evidence that DMF induces a gradual anti-inflammatory response in the gut draining lymph nodes, which might contribute to the reduction of both intestinal discomfort and the inflammatory response of EAE. These findings indicate that the gut is the first microenvironment of action of DMF, which may contribute to its effects of reducing disease severity in MS patients.


Subject(s)
Dimethyl Fumarate , Encephalomyelitis, Autoimmune, Experimental , Lymph Nodes , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Lymph Nodes/immunology , Lymph Nodes/drug effects , Mice , Female , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Mesentery , Cytokines/metabolism , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Disease Models, Animal
2.
Sci Rep ; 14(1): 7375, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548777

ABSTRACT

The COVID-19 pandemic was initiated by the rapid spread of a SARS-CoV-2 strain. Though mainly classified as a respiratory disease, SARS-CoV-2 infects multiple tissues throughout the human body, leading to a wide range of symptoms in patients. To better understand how SARS-CoV-2 affects the proteome from cells with different ontologies, this work generated an infectome atlas of 9 cell models, including cells from brain, blood, digestive system, and adipocyte tissue. Our data shows that SARS-CoV-2 infection mainly trigger dysregulations on proteins related to cellular structure and energy metabolism. Despite these pivotal processes, heterogeneity of infection was also observed, highlighting many proteins and pathways uniquely dysregulated in one cell type or ontological group. These data have been made searchable online via a tool that will permit future submissions of proteomic data ( https://reisdeoliveira.shinyapps.io/Infectome_App/ ) to enrich and expand this knowledgebase.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Proteomics , Pandemics
3.
Res Q Exerc Sport ; : 1-10, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319611

ABSTRACT

Purpose: The aim of this study was to investigate the effects of moderate combined training (CT) on both the gene expression of pro- and anti-inflammatory markers and senescence in the immune system in peripheral blood mononuclear cells (PBMCs) and subcutaneous adipose tissue (SAT) of obese middle-aged individuals with type 2 diabetes (T2D). Methods: Thirty obese individuals (50.2 ± 9.4 years; body mass index: 31.8 ± 2.3 kg/m²) with T2D underwent 16 weeks of a CT group [CT; aerobic (50-60% of VO2max) plus resistance (50-75% of 1RM) training; 3 times/week, 70 min/session; n = 16)] or a control group (CG, n = 14). Nutritional patterns, muscle strength (1RM), cardiorespiratory fitness (VO2max), waist circumference (WC), body composition (Air Displacement Plethysmograph) and blood collections for biochemical (serum leptin, IL-2, IL-4, IL-6, IL-10, TNF-α and anti-CMV) and molecular (gene expression of leptin, IL-2, IL-4, IL-6, IL-10, TNF-α, PD-1, P16ink4a, CCR7, CD28 and CD27 in PBMCs and SAT) analyses were assessed before (Pre) and after (Post) the 16 weeks of the experimental period. Results: Significant decreases were observed in WC and IL4, TNF-α, PD-1 and CD27 expression in PBMCs for CT. Furthermore, significant increases were observed in 1RM and VO2max for CT after the experimental period. Conclusion: Moderate CT contributed to a reduction in the gene expression of markers associated to chronic inflammation and immunosenescence in PBMCs of obese middle-aged individuals with T2D.

4.
Neuroimmunomodulation ; 31(1): 25-39, 2024.
Article in English | MEDLINE | ID: mdl-38128499

ABSTRACT

INTRODUCTION: The thymus is the primary lymphoid organ responsible for normal T-cell development. Yet, in abnormal metabolic conditions as well as an acute infection, the organ exhibits morphological and cellular alterations. It is well established that the immune system is in a tidy connection and dependent on the central nervous system (CNS), which regulates thymic function by means of innervation and neurotransmitters. Sympathetic innervation leaves the CNS and spreads through thymic tissue, where nerve endings interact directly or indirectly with thymic cells contributing to their maintenance and development. METHODS: Herein, we hypothesized that brain damage due to an inflammatory process might elicit alterations upon the thymic-CNS neuroimmune axis, altering not just the sympathetic innervation and neurotransmitter release, but also modifying the thymus microenvironment and T-cell development. We used the well-established multiple sclerosis model of experimental autoimmune encephalomyelitis (EAE), to study putative changes in the thymic neural, lymphoid, and microenvironmental compartments. RESULTS: We showed that along with EAE clinical development, thymus morphology, and cellular compartments are affected, altering the peripheric T-cell population and modifying the retrograde thymic communication toward the CNS. CONCLUSION: Altogether, our data suggest that the thymic-CNS neuroimmune bidirectional axis is compromised in EAE. This imbalance may contribute to an increased and uncontrolled auto-immune reaction.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Humans , Thymus Gland , T-Lymphocytes/metabolism , Neuroimmunomodulation
5.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175706

ABSTRACT

The purpose of this study was to examine whether myeloid dendritic cells (mDCs) from patients with multiple sclerosis (MS) and healthy controls (HCs) become similarly tolerogenic when exposed to IL-27 as this may represent a potential mechanism of autoimmune dysregulation. Our study focused on natural mDCs that were isolated from HCs and MS patient peripheral blood mononuclear cells (PBMCs). After a 24-h treatment with IL-27 ± lipopolysaccharide (LPS), the mDCs were either harvested to identify IL-27-regulated gene expression or co-cultured with naive T-cells to measure how the treated DC affected T-cell proliferation and cytokine secretion. mDCs isolated from HCs but not untreated MS patients became functionally tolerogenic after IL-27 treatment. Although IL-27 induced both HC and untreated MS mDCs to produce similar amounts of IL-10, the tolerogenic HC mDCs expressed PD-L2, IDO1, and SOCS1, while the non-tolerogenic untreated MS mDCs expressed IDO1 and IL-6R. Cytokine and RNA analyses identified two signature blocks: the first identified genes associated with mDC tolerizing responses to IL-27, while the second was associated with the presence of MS. In contrast to mDCs from untreated MS patients, mDCs from HCs and IFNb-treated MS patients became tolerogenic in response to IL-27. The genes differentially expressed in the different donor IL-27-treated mDCs may contain targets that regulate mDC tolerogenic responses.


Subject(s)
Interleukin-27 , Multiple Sclerosis , Humans , Cells, Cultured , Cytokines/metabolism , Dendritic Cells , Interleukin-27/metabolism , Leukocytes, Mononuclear/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , T-Lymphocytes/metabolism
6.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Article in English | MEDLINE | ID: mdl-36889041

ABSTRACT

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase , COVID-19 , Humans , Lipoproteins, LDL , Biomarkers , Lysophosphatidylcholines
7.
Nat Commun ; 13(1): 5722, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175400

ABSTRACT

Visceral adiposity is a risk factor for severe COVID-19, and a link between adipose tissue infection and disease progression has been proposed. Here we demonstrate that SARS-CoV-2 infects human adipose tissue and undergoes productive infection in fat cells. However, susceptibility to infection and the cellular response depends on the anatomical origin of the cells and the viral lineage. Visceral fat cells express more ACE2 and are more susceptible to SARS-CoV-2 infection than their subcutaneous counterparts. SARS-CoV-2 infection leads to inhibition of lipolysis in subcutaneous fat cells, while in visceral fat cells, it results in higher expression of pro-inflammatory cytokines. Viral load and cellular response are attenuated when visceral fat cells are infected with the SARS-CoV-2 gamma variant. A similar degree of cell death occurs 4-days after SARS-CoV-2 infection, regardless of the cell origin or viral lineage. Hence, SARS-CoV-2 infects human fat cells, replicating and altering cell function and viability in a depot- and viral lineage-dependent fashion.


Subject(s)
COVID-19 , SARS-CoV-2 , Adipose Tissue , Angiotensin-Converting Enzyme 2 , Cytokines , Humans
8.
Front Immunol ; 13: 750660, 2022.
Article in English | MEDLINE | ID: mdl-35197967

ABSTRACT

Background: Emerging evidence of antibody-independent functions, as well as the clinical efficacy of anti-CD20 depleting therapies, helped to reassess the contribution of B cells during multiple sclerosis (MS) pathogenesis. Objective: To investigate whether CD19+ B cells may share expression of the serine-protease granzyme-B (GzmB), resembling classical cytotoxic CD8+ T lymphocytes, in the peripheral blood from relapsing-remitting MS (RRMS) patients. Methods: In this study, 104 RRMS patients during different treatments and 58 healthy donors were included. CD8, CD19, Runx3, and GzmB expression was assessed by flow cytometry analyses. Results: RRMS patients during fingolimod (FTY) and natalizumab (NTZ) treatment showed increased percentage of circulating CD8+GzmB+ T lymphocytes when compared to healthy volunteers. An increase in circulating CD19+GzmB+ B cells was observed in RRMS patients during FTY and NTZ therapies when compared to glatiramer (GA), untreated RRMS patients, and healthy donors but not when compared to interferon-ß (IFN). Moreover, regarding Runx3, the transcriptional factor classically associated with cytotoxicity in CD8+ T lymphocytes, the expression of GzmB was significantly higher in CD19+Runx3+-expressing B cells when compared to CD19+Runx3- counterparts in RRMS patients. Conclusions: CD19+ B cells may exhibit cytotoxic behavior resembling CD8+ T lymphocytes in MS patients during different treatments. In the future, monitoring "cytotoxic" subsets might become an accessible marker for investigating MS pathophysiology and even for the development of new therapeutic interventions.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting/drug therapy , Adult , Antigens, CD19/therapeutic use , Antigens, CD20 , B-Lymphocytes/metabolism , Female , Fingolimod Hydrochloride/therapeutic use , Glatiramer Acetate/therapeutic use , Humans , Interferon-beta/therapeutic use , Lymphocyte Count , Male , Middle Aged , Multiple Sclerosis/drug therapy , Natalizumab/therapeutic use , Peptides , T-Lymphocytes
9.
Infect Genet Evol ; 99: 105236, 2022 04.
Article in English | MEDLINE | ID: mdl-35149224

ABSTRACT

SARS-CoV-2 variants of concern have emerged since the COVID-19 outburst, notably the lineages detected in the UK, South Africa, and Brazil. Their increased transmissibility and higher viral load put them in the spotlight. Much has been investigated on the ability of those new variants to evade antibody recognition. However, little attention has been given to pre-existing and induced SARS-CoV-2-specific CD8+ T cell responses by new lineages. In this work, we predicted SARS-CoV-2-specific CD8+ T cell epitopes from the main variants of concern and their potential to trigger or hinder CD8+ T cell response by using HLA binding and TCR reactivity in silico predictions. Also, we estimated the population's coverage for different lineages, which accounts for the ability to present a set of peptides based on the most frequent HLA alleles of a given population. We considered binding predictions to 110 ccClass I HLA alleles from 29 countries to investigate differences in the fraction of individuals expected to respond to a given epitope set from new and previous lineages. We observed a higher population coverage for the variant detected in the UK (B.1.1.7), and South Africa (B.1.351), as well as for the Brazilian P.1 lineage, but not P.2, compared to the reference lineage. Moreover, individual mutations such as Spike N501Y and Nucleocapsid D138Y were predicted to have an overall stronger affinity through HLA-I than the reference sequence while Spike E484K shows signs of evasion. In summary, we provided evidence for the existence of potentially immunogenic and conserved epitopes across new SARS-CoV-2 variants, but also mutant peptides exhibiting diminished or abolished HLA-I binding. It also highlights the augmented population coverage for three new lineages. Whether these changes imply more T cell reactivity or potential to evade from CD8+ T cell responses requires experimental verification.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte/genetics , Humans , Immunity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Viruses ; 13(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34834934

ABSTRACT

A SARS-CoV-2 B.1.1.7 variant of concern (VOC) has been associated with increased transmissibility, hospitalization, and mortality. This study aimed to explore the factors associated with B.1.1.7 VOC infection in the context of vaccination. On March 2021, we detected SARS-CoV-2 RNA in nasopharyngeal samples from 14 of 22 individuals vaccinated with a single-dose of ChAdOx1 (outbreak A, n = 26), and 22 of 42 of individuals with two doses of the CoronaVac vaccine (outbreak B, n = 52) for breakthrough infection rates for ChAdOx1 of 63.6% and 52.4% for CoronaVac. The outbreaks were caused by two independent clusters of the B.1.1.7 VOC. The serum of PCR-positive symptomatic SARS-CoV-2-infected individuals had ~1.8-3.4-fold more neutralizing capacity against B.1.1.7 compared to the serum of asymptomatic individuals. These data based on exploratory analysis suggest that the B.1.1.7 variant can infect individuals partially immunized with a single dose of an adenovirus-vectored vaccine or fully immunized with two doses of an inactivated vaccine, although the vaccines were able to reduce the risk of severe disease and death caused by this VOC, even in the elderly.


Subject(s)
COVID-19 Vaccines , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Vaccination , Adenoviridae , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Brazil/epidemiology , COVID-19/prevention & control , COVID-19 Serological Testing , Cohort Studies , Disease Outbreaks/statistics & numerical data , Female , Genetic Vectors , Humans , Immunoglobulin G/blood , Male , Middle Aged , RNA, Viral , Vaccines, Inactivated , Whole Genome Sequencing , Young Adult
11.
Front Cell Neurosci ; 15: 705618, 2021.
Article in English | MEDLINE | ID: mdl-34381335

ABSTRACT

BACKGROUND: Neurofilament Light (NfL) chain levels in both cerebrospinal fluid (CSF) and serum have been correlated with the reduction of axonal damage in multiple sclerosis (MS) patients treated with Natalizumab (NTZ). However, little is known about the function of plasmacytoid cells in NTZ-treated MS patients. OBJECTIVE: To evaluate CSF NfL, serum levels of soluble-HLA-G (sHLA-G), and eventual tolerogenic behavior of plasmacytoid dendritic cells (pDCs) in MS patients during NTZ treatment. METHODS: CSF NfL and serum sHLA-G levels were measured using an ELISA assay, while pDCs (BDCA-2+) were accessed through flow cytometry analyses. RESULTS: CSF levels of NfL were significantly reduced during NTZ treatment, while the serum levels of sHLA-G were increased. Moreover, NTZ treatment enhanced tolerogenic (HLA-G+, CD274+, and HLA-DR+) molecules and migratory (CCR7+) functions of pDCs in the peripheral blood. CONCLUSION: These findings suggest that NTZ stimulates the production of molecules with immunoregulatory function such as HLA-G and CD274 programmed death-ligand 1 (PD-L1) which may contribute to the reduction of axonal damage represented by the decrease of NfL levels in patients with MS.

12.
Mult Scler Relat Disord ; 52: 103013, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34030100

ABSTRACT

Recently, it was shown that highly effective anti-CD20 therapies used for MS patients not only deplete CD20+ B cells, but also a small subset of T cells expressing CD20 surface marker (CD3+CD20+ T cells). Here we demonstrated that, in progressive MS patients, CD3+CD20+ T cells share the ability to express cytotoxic factors such as perforin and serine-protease granzyme-B (GzmB), classically associated with CD8+ T cells functionality. Beyond it, cluster analyses show that a set of activation markers and transcriptional factors related with CD8 effector program are also expressed in CD3+CD20+ T cells. Further characterization of surface and functional markers from CD3+CD20+ T subsets may be helpful for development of new therapeutic strategies mainly for progressive MS patients, as well as for assessing pathophysiological effects of highly effective anti-CD20 therapies.


Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis , Antigens, CD20 , CD8-Positive T-Lymphocytes , Humans , Perforin
13.
Emerg Infect Dis ; 27(6): 1737-1740, 2021.
Article in English | MEDLINE | ID: mdl-33871331

ABSTRACT

We documented 4 cases of severe acute respiratory syndrome coronavirus 2 reinfection by non-variant of concern strains among healthcare workers in Campinas, Brazil. We isolated infectious particles from nasopharyngeal secretions during both infection episodes. Improved and continued protection measures are necessary to mitigate the risk for reinfection among healthcare workers.


Subject(s)
COVID-19/diagnosis , Health Personnel , Reinfection/diagnosis , Reinfection/virology , SARS-CoV-2/isolation & purification , Virus Shedding , Adult , Brazil/epidemiology , COVID-19/epidemiology , Female , Humans , Middle Aged , Reinfection/therapy
14.
Viruses ; 13(2)2021 02 16.
Article in English | MEDLINE | ID: mdl-33669276

ABSTRACT

Background: Coronavirus disease 19 (COVID-19) can develop into a severe respiratory syndrome that results in up to 40% mortality. Acute lung inflammatory edema is a major pathological finding in autopsies explaining O2 diffusion failure and hypoxemia. Only dexamethasone has been shown to reduce mortality in severe cases, further supporting a role for inflammation in disease severity. SARS-CoV-2 enters cells employing angiotensin-converting enzyme 2 (ACE2) as a receptor, which is highly expressed in lung alveolar cells. ACE2 is one of the components of the cellular machinery that inactivates the potent inflammatory agent bradykinin, and SARS-CoV-2 infection could interfere with the catalytic activity of ACE2, leading to the accumulation of bradykinin. Methods: In this case control study, we tested two pharmacological inhibitors of the kinin-kallikrein system that are currently approved for the treatment of hereditary angioedema, icatibant, and inhibitor of C1 esterase/kallikrein, in a group of 30 patients with severe COVID-19. Results: Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in changes in time to clinical improvement. However, both compounds were safe and promoted the significant improvement of lung computed tomography scores and increased blood eosinophils, which are indicators of disease recovery. Conclusions: In this small cohort, we found evidence for safety and a beneficial role of pharmacological inhibition of the kinin-kallikrein system in two markers that indicate improved disease recovery.


Subject(s)
Bradykinin/analogs & derivatives , COVID-19 Drug Treatment , Complement C1 Inhibitor Protein/therapeutic use , Kallikrein-Kinin System/drug effects , Kallikreins/antagonists & inhibitors , Adult , Aged , Bradykinin/therapeutic use , Case-Control Studies , Drug Repositioning , Female , Humans , Lung/drug effects , Lung/pathology , Male , Middle Aged
15.
Front Immunol ; 12: 806400, 2021.
Article in English | MEDLINE | ID: mdl-35069589

ABSTRACT

Recently, it has been argued that obesity leads to a chronic pro-inflammatory state that can accelerate immunosenescence, predisposing to the early acquisition of an immune risk profile and health problems related to immunity in adulthood. In this sense, the present study aimed to verify, in circulating leukocytes, the gene expression of markers related to early immunosenescence associated with obesity and its possible relationships with the physical fitness in obese adults with type 2 diabetes or without associated comorbidities. The sample consisted of middle-aged obese individuals (body mass index (BMI) between 30-35 kg/m²) with type 2 diabetes mellitus (OBD; n = 17) or without associated comorbidity (OB; n = 18), and a control group of eutrophic healthy individuals (BMI: 20 - 25 kg/m²) of same ages (E; n = 18). All groups (OBD, OB and E) performed the functional analyses [muscle strength (1RM) and cardiorespiratory fitness (VO2max)], anthropometry, body composition (Air Displacement Plethysmograph), blood collections for biochemical (anti-CMV) and molecular (gene expression of leptin, IL-2, IL-4, IL-6, IL-10, TNF-α, PD-1, P16ink4a, CCR7, CD28 and CD27) analyses of markers related to immunosenescence. Increased gene expression of leptin, IL-2, IL-4, IL-10, TNF-α, PD-1, P16ink4a, CCR7 and CD27 was found for the OBD and OB groups compared to the E group. Moreover, VO2max for the OBD and OB groups was significantly lower compared to E. In conclusion, obesity, regardless of associated disease, induces increased gene expression of markers associated with inflammation and immunosenescence in circulating leukocytes in obese middle-aged individuals compared to a eutrophic group of the same age. Additionally, increased adipose tissue and markers of chronic inflammation and immunosenescence were associated to impairments in the cardiorespiratory capacity of obese middle-aged individuals.


Subject(s)
Biomarkers , Gene Expression , Immunosenescence/genetics , Obesity/genetics , Obesity/immunology , Adipose Tissue/metabolism , Adult , Age Factors , Aging , Body Composition , Body Mass Index , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Middle Aged , Obesity/metabolism
17.
Cell Metab ; 32(3): 437-446.e5, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32697943

ABSTRACT

COVID-19 can result in severe lung injury. It remained to be determined why diabetic individuals with uncontrolled glucose levels are more prone to develop the severe form of COVID-19. The molecular mechanism underlying SARS-CoV-2 infection and what determines the onset of the cytokine storm found in severe COVID-19 patients are unknown. Monocytes and macrophages are the most enriched immune cell types in the lungs of COVID-19 patients and appear to have a central role in the pathogenicity of the disease. These cells adapt their metabolism upon infection and become highly glycolytic, which facilitates SARS-CoV-2 replication. The infection triggers mitochondrial ROS production, which induces stabilization of hypoxia-inducible factor-1α (HIF-1α) and consequently promotes glycolysis. HIF-1α-induced changes in monocyte metabolism by SARS-CoV-2 infection directly inhibit T cell response and reduce epithelial cell survival. Targeting HIF-1ɑ may have great therapeutic potential for the development of novel drugs to treat COVID-19.


Subject(s)
Betacoronavirus/physiology , Blood Glucose/metabolism , Coronavirus Infections/complications , Diabetes Complications/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Monocytes/metabolism , Pneumonia, Viral/complications , Adult , COVID-19 , Cell Line , Coronavirus Infections/metabolism , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Female , Glycolysis , Humans , Inflammation/complications , Inflammation/metabolism , Male , Middle Aged , Monocytes/virology , Pandemics , Pneumonia, Viral/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Signal Transduction
18.
Pediatr Diabetes ; 21(4): 606-614, 2020 06.
Article in English | MEDLINE | ID: mdl-32078220

ABSTRACT

OBJECTIVE: Characterization of partial remission using the insulin dose-adjusted HbA1c (IDAA1c) ≤ 9 definition in a multiethnic Brazilian population of children and adolescents with type 1 diabetes (T1D), in addition with the determination of both Class II HLA genotype and autoantibodies. METHODS: We analyzed the prevalence of partial remission in 51 new-onset T1D patients with a median time follow-up of 13 months from diagnosis. For this study, anti-GAD65, anti-IA2 and HLA class II genotyping were considered. RESULTS: Partial remission occurred in 41.2% of T1D patients until 3 months after diagnosis, mainly in those aged 5-15 years. We have demonstrated a significant increase in the haplotypes of class II HLA DRB1*0301-DQB1*0201 in children and adolescents with a partial remission phase of the disease (42.9% vs 21.7% in non-remitters, P = .0291). This haplotype was also associated with the reduction of anti-IA2 antibodies production. Homozygote DRB1*03-DQB1*0201/DRB1*03-DQB1*0201 children had the lowest prevalence of IA-2A antibodies (P = .0402). However, this association does not correlate with the time of the remission phase. CONCLUSION: Although the number of patients studied was reduced, our data suggested that the association between genetics and decrease in antibody production to certain islet auto-antigen may contribute, at least in part, to the remission phase of T1D.


Subject(s)
Autoantibodies/biosynthesis , Diabetes Mellitus, Type 1 , Histocompatibility Antigens Class II/genetics , Adolescent , Adult , Autoantibodies/genetics , Brazil/epidemiology , Case-Control Studies , Child , Child, Preschool , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , HLA-DRB1 Chains/genetics , Haplotypes , Humans , Infant , Male , Remission, Spontaneous , Young Adult
19.
J Neuroimmunol ; 340: 577148, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31986375

ABSTRACT

Our group is interested in the cytotoxic mechanism during autoimmune neuroinflammation. Unexpectedly, we come across a case that presents a massive enhancement of cytotoxic behavior in lymphocytes, either in peripheral blood and cerebrospinal fluid. Interestingly, this specific patient was refractory to Methylprednisolone treatment. Hypothetically, the cytotoxic activity could represent a novel and complementary effector mechanism to NMOSD pathogenesis. Nevertheless, further investigation is needed to evaluate the extension and the clinical relevance of our finds.


Subject(s)
B-Lymphocytes/immunology , Cytotoxicity, Immunologic/immunology , Neuromyelitis Optica/immunology , T-Lymphocytes/immunology , Female , Humans , Middle Aged
20.
Brain Behav Immun Health ; 9: 100162, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34589900

ABSTRACT

Depression/anxiety (D/A) occurs in up to 50% of multiple sclerosis (MS) patients. Proinflammatory cytokines induce classical symptoms of depression. Activation of the inflammatory response also triggers production of indoleamine 2,3-dioxygenase (IDO), which catabolizes tryptophan, the amino acid precursor of serotonin and melatonin. It has been suggested that IDO is the link between the immune and serotonergic systems. This study aimed to quantify the levels of IDO and pro-inflammatory and anti-inflammatory cytokines in patients with MS and depression, according to treatment with interferon-beta (IFN-ß) or fingolimod. The study inclusion criteria were age 18-60 years and a clinical and radiological diagnosis of MS. One hundred and thirty-two patients diagnosed by McDonald's criteria and followed up at Brasília District Hospital, Brazil, with relapsing-remitting MS were identified as potential study participants. Thirty-five of these patients were identified to be receiving treatment with fingolimod or IFN-ß and to have a diagnosis of D/A. IDO and pro-inflammatory and anti-inflammatory cytokine levels were compared between these 35 patients and 18 healthy controls. The level of IL-10 (an anti-inflammatory cytokine) was lower in both the fingolimod-treated (P â€‹< â€‹0.001) and IFN-ß-treated (P â€‹< â€‹0.01) patient groups than in the control group. IFN-ß-treated patients showed increased IDO expression and decreased inflammatory cytokine levels. In contrast, fingolimod-treated patients showed significantly decreased expression of IDO and significantly increased levels of proinflammatory cytokines produced by innate immune cells, including tumor necrosis factor-alpha and interleukin-6. The agents used to treat MS maintain symptoms of D/A in patients with MS via different mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...