Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Metab Cardiovasc Dis ; 25(7): 659-66, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26026207

ABSTRACT

BACKGROUND AND AIMS: Diabetes mellitus is associated with inflammatory endothelial activation and increased vascular leukocyte adhesion molecule expression, both playing a prominent role in the development of vascular complications. Centella asiatica (CA) and Lipoic Acid (LA) have shown anti-inflammatory and anti-oxidant properties in a variety of experimental models; however, their action on human umbilical vein endothelial cells (HUVECs), chronically exposed to hyperglycemia and pro-inflammatory environment during pregnancy, is still unknown. METHODS AND RESULTS: In HUVECs from umbilical cords of gestational diabetic (GD) or healthy (C) women, both CA and LA affected tumor necrosis factor-α (TNF-α)-induced inflammation, being associated with a significant decrease in vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression (western blot) and exposure (flow cytometry), as well as monocyte-HUVECs interaction (adhesion assay). Notably, this was associated with a significant reduction of an index of nitro-oxidative stress, such as the intracellular peroxynitrite levels (fluorescence detection by cytometric analysis), Mitogen-Activated Protein kinase (p44/42 MAPK) expression/phosphorylation levels and Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB p65) cytoplasm-nucleus translocation (flow cytometry). Overall our results indicate that both CA and LA used separately, and even better when combined, are effective to reduce the inflammatory response in TNF-α-treated HUVECs. Notably, this was more significant in GD than in C-HUVECs and also evident at baseline. CONCLUSION: In conclusion, our in vitro study demonstrates that both CA and LA, or a combination thereof, are able to mitigate the potentially dangerous effects on the endothelium of chronic exposure to hyperglycemia in vivo.


Subject(s)
Antioxidants/pharmacology , Cell Adhesion/drug effects , Diabetes, Gestational/pathology , Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Monocytes/drug effects , Thioctic Acid/pharmacology , Triterpenes/pharmacology , Adult , Cell Adhesion Molecules/biosynthesis , Centella , Female , Humans , Plant Extracts , Pregnancy , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL