Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Technol ; : 1-12, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37161857

ABSTRACT

In this work, polypyrrole (PPy) was synthesized on the surface of waste surgical face masks (SFM) with a novel environmentally-friendly in-situ-surface polymerization approach and used as an adsorbent for removing hexavalent chromium (Cr(VI)). In this method, the SFM surface was activated using KMnO4, resulting in the immobilization of porous MnO2, on which pyrrole can be polymerized efficiently. The novelty of this method is the presence of the oxidant on the surface before the polymerization step, which results in a better surface modification with polypyrrole. This method provides adsorbents with higher adsorption capacity compared to the conventional polymerization method with ammonium persulfate (APS). The adsorbent prepared at the mass ratios of 1.0 and 2.0; respectively, for KMnO4/SFM and pyrrole/SFM showed the highest performance. The adsorbent characterization revealed the successful polymerization of pyrrole on the surface of SFM. Reusability of the KMnO4 and pyrrole solutions were successful with remarkable results, showing the advantage of this technique compared to the conventional polymerization method with APS. The effect of different factors on the adsorption process was investigated. The removal rate was around 98% under the optimum conditions (pH, 2; adsorbent dosage, 3 g L-1; contact time, 60 min). The equilibrium data were well fitted by Langmuir isotherm (R2 = 0.9999). Kinetic investigations revealed that the adsorption process fitted well with the pseudo-second-order model. The adsorbent was regenerated for up to five cycles. One of the most important advantages of the proposed method compared to other methods is the reduction of wastewater during the synthesis process.

2.
Int J Phytoremediation ; 25(5): 586-597, 2023.
Article in English | MEDLINE | ID: mdl-35786106

ABSTRACT

In the present study, sisal-Fe/Zn LDH bio-nanocomposite for efficiently removing rifampin was synthesized using a simple co-precipitation method. SEM, XRD, and FTIR analyses were applied to characterize the prepared composite. In the following, different factors that are affecting the adsorption of rifampin, including contact time, initial rifampin concentration, adsorbent dosage, and temperature were evaluated. Also, the kinetic, isotherm, and thermodynamic studies were investigated. The results indicated that Freundlich (R2 = 0.9976) was a suitable model for describing the adsorption equilibrium and adsorption kinetic showed that the data are in maximum agreement with the pseudo-second-order kinetic model (R2 = 0.9931). According to the Langmuir isotherm model, the maximum adsorption capacity of rifampin was found to be 40.00 mg/g. The main mechanisms for rifampin elimination were introduced as electrostatic attraction and physical adsorption. Moreover, the spontaneity and nature of the reaction were analyzed by elucidating thermodynamic factors that indicated the adsorption process was exothermic and spontaneous. Also, the batch process design indicated that for treating 10 L wastewater containing 100 mg/L rifampin with a removal efficiency of 96%, the needed amount of sisal-Fe/Zn LDH is 51.6 g. This study revealed that the sisal-Fe/Zn LDH bio-nanocomposites as a low-cost adsorbent have promising adsorption potential.


In this study, an innovative bio-nanocomposite (sisal­Fe/Zn layered double hydroxide) has been synthesized using a co-precipitation method for the first time and was used for the removal of pharmaceutical pollutants. Sisal­Fe/Zn LDH exhibited an excellent adsorption capacity of 40.00 mg/g to remove rifampin from the aqueous solution. The main mechanisms for rifampin elimination were introduced as electrostatic attraction and physical adsorption. Also, the batch process design showed that for treating 10 L wastewater containing 100 mg/L rifampin with a removal rate of 96%, the amount of sisal­LDH bio-nanocomposite required is about 51.6 g. Therefore, sisal­Fe/Zn layered double hydroxide as an eco-friendly biosorbent can be considered for future water treatment.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Rifampin/analysis , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Biodegradation, Environmental , Hydroxides/analysis , Water/analysis , Thermodynamics , Kinetics , Adsorption , Zinc
3.
Sci Rep ; 12(1): 16442, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180518

ABSTRACT

Dye pollution has always been a serious concern globally, threatening the lives of humans and the ecosystem. In the current study, treated lignocellulosic biomass waste supported with FeCl3/Zn(NO3)2 was utilized as an effective composite for removing Reactive Orange 16 (RO16). SEM/EDAX, FTIR, and XRD analyses exhibited that the prepared material was successfully synthesized. The removal efficiency of 99.1% was found at an equilibrium time of 110 min and dye concentration of 5 mg L-1 Adsorbent mass of 30 mg resulted in the maximum dye elimination, and the efficiency of the process decreased by increasing the temperature from 25 to 40 °C. The effect of pH revealed that optimum pH was occurred at acidic media, having the maximum dye removal of greater than 90%. The kinetic and isotherm models revealed that RO16 elimination followed pseudo-second-order (R2 = 0.9982) and Freundlich (R2 = 0.9758) assumptions. Surprisingly, the performance of modified sawdust was 15.5 times better than the raw sawdust for the dye removal. In conclusion, lignocellulosic sawdust-Fe/Zn composite is promising for dye removal.


Subject(s)
Water Decolorization , Water Pollutants, Chemical , Adsorption , Azo Compounds , Biomass , Ecosystem , Humans , Hydrogen-Ion Concentration , Kinetics , Lignin , Wastewater , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL