Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 203(12): e0056520, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33782056

ABSTRACT

Acinetobacter baumannii is a poorly understood bacterium capable of life-threatening infections in hospitals. Few antibiotics remain effective against this highly resistant pathogen. Development of rationally designed antimicrobials that can target A. baumannii requires improved knowledge of the proteins that carry out essential processes allowing growth of the organism. Unfortunately, studying essential genes has been challenging using traditional techniques, which usually require time-consuming recombination-based genetic manipulations. Here, we performed saturating mutagenesis with dual transposon systems to identify essential genes in A. baumannii, and we developed a CRISPR interference (CRISPRi) system for facile analysis of these genes. We show that the CRISPRi system enables efficient transcriptional silencing in A. baumannii. Using these tools, we confirmed the essentiality of the novel cell division protein AdvA and discovered a previously uncharacterized AraC family transcription factor (ACX60_RS03245) that is necessary for growth. In addition, we show that capsule biosynthesis is a conditionally essential process, with mutations in late-acting steps causing toxicity in strain ATCC 17978 that can be bypassed by blocking early-acting steps or activating the BfmRS stress response. These results open new avenues for analysis of essential pathways in A. baumannii. IMPORTANCE New approaches are urgently needed to control A. baumannii, one of the most drug-resistant pathogens known. To facilitate the development of novel targets that allow inhibition of the pathogen, we performed a large-scale identification of genes whose products the bacterium needs for growth. We also developed a CRISPR-based gene knockdown tool that operates efficiently in A. baumannii, allowing rapid analysis of these essential genes. We used these methods to define multiple processes vital to the bacterium, including a previously uncharacterized gene regulatory factor and export of a protective polymeric capsule. These tools will enhance our ability to investigate processes critical for the essential biology of this challenging hospital-acquired pathogen.


Subject(s)
Acinetobacter baumannii/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Transposable Elements/physiology , Bacterial Capsules , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Transposable Elements/genetics , Gene Expression Regulation, Bacterial , Gene Knockdown Techniques , Mutagenesis
3.
Nat Commun ; 11(1): 4522, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908144

ABSTRACT

A unique, protective cell envelope contributes to the broad drug resistance of the nosocomial pathogen Acinetobacter baumannii. Here we use transposon insertion sequencing to identify A. baumannii mutants displaying altered susceptibility to a panel of diverse antibiotics. By examining mutants with antibiotic susceptibility profiles that parallel mutations in characterized genes, we infer the function of multiple uncharacterized envelope proteins, some of which have roles in cell division or cell elongation. Remarkably, mutations affecting a predicted cell wall hydrolase lead to alterations in lipooligosaccharide synthesis. In addition, the analysis of altered susceptibility signatures and antibiotic-induced morphology patterns allows us to predict drug synergies; for example, certain beta-lactams appear to work cooperatively due to their preferential targeting of specific cell wall assembly machineries. Our results indicate that the pathogen may be effectively inhibited by the combined targeting of multiple pathways critical for envelope growth.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Cross Infection/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Wall/drug effects , Cell Wall/genetics , Cell Wall/metabolism , Cross Infection/microbiology , DNA Mutational Analysis , DNA Transposable Elements/genetics , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects , Drug Synergism , Humans , Microbial Sensitivity Tests , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...