Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Chem Commun (Camb) ; 60(52): 6651-6654, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38856656

ABSTRACT

Functionalized lipid probes are a critical new tool to interrogate the function of individual lipid species, but the structural parameters that constrain their utility have not been thoroughly described. Here, we synthesize three palmitic acid derivatives with a diazirine at different positions on the acyl chain and examine their metabolism, subcellular localization, and protein interactions. We demonstrate that while they produce very similar metabolites and subcellular distributions, probes with the diazirine at either end pulldown distinct subsets of proteins after photo-crosslinking. This highlights the importance of thoughtful diazirine placement when developing probes based on biological molecules.


Subject(s)
Diazomethane , Diazomethane/chemistry , Humans , Fatty Acids/chemistry , Molecular Structure , Palmitic Acid/chemistry
2.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798378

ABSTRACT

Functionalized lipid probes are a critical new tool to interrogate the function of individual lipid species, but the structural parameters that constrain their utility have not been thoroughly described. Here, we synthesize three palmitic acid derivatives with a diazirine at different positions on the acyl chain and examine their metabolism, subcellular localization, and protein interactions. We demonstrate that while they produce very similar metabolites and subcellular distributions, probes with the diazirine at either end pulldown distinct subsets of proteins after photo-crosslinking. This highlights the importance of thoughtful diazirine placement when developing probes based on biological molecules.

3.
ACS Chem Biol ; 19(2): 336-347, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38284972

ABSTRACT

Functions and cell biology of the sphingolipids sphingosine and sphinganine in cells are not well understood. While some signaling roles for sphingosine have been elucidated, the closely related sphinganine has been described only insofar as it does not elicit many of the same signaling responses. Here, we prepared multifunctionalized derivatives of the two lipid species that differ only in a single double bond of the carbon backbone. Using these novel probes, we were able to define their spatiotemporal distributions within cells. Furthermore, we used these tools to systematically map the protein interactomes of both lipids. The lipid-protein conjugates, prepared through photo-crosslinking in live cells and extraction via click chemistry to azide beads, revealed significant differences in the captured proteins, highlighting their distinct roles in various cellular processes. This work elucidates mechanistic differences between these critical lipids and sets the foundation for further studies of the cellular functions of sphingosine and sphinganine.


Subject(s)
Sphingolipids , Sphingosine , Sphingosine/analogs & derivatives , Sphingolipids/metabolism , Sphingosine/metabolism
4.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546869

ABSTRACT

Sphingomyelin (SM) is a major component of mammalian cell membranes and particularly abundant in the myelin sheath that surrounds nerve fibers. Its production is catalyzed by SM synthases SMS1 and SMS2, which interconvert phosphatidylcholine and ceramide to diacylglycerol and SM in the Golgi and at the plasma membrane, respectively. As the lipids participating in this reaction fulfill both structural and signaling functions, SMS enzymes have considerable potential to influence diverse important cellular processes. The nematode Caenorhabditis elegans is an attractive model for studying both animal development and human disease. The organism contains five SMS homologues but none of these have been characterized in any detail. Here, we carried out the first systematic analysis of SMS family members in C. elegans . Using heterologous expression systems, genetic ablation, metabolic labeling and lipidome analyses, we show that C. elegans harbors at least three distinct SM synthases and one ceramide phosphoethanolamine (CPE) synthase. Moreover, C. elegans SMS family members have partially overlapping but also unique subcellular distributions and together occupy all principal compartments of the secretory pathway. Our findings shed light on crucial aspects of sphingolipid metabolism in a valuable animal model and opens avenues for exploring the role of SM and its metabolic intermediates in organismal development.

5.
Methods Mol Biol ; 2610: 1-16, 2023.
Article in English | MEDLINE | ID: mdl-36534277

ABSTRACT

Sphingolipids are a critical family of membrane lipids with diverse functions in eukaryotic cells, and a growing body of literature supports that these lipids play essential roles during the lifecycles of viruses. While small molecule inhibitors of sphingolipid synthesis and metabolism are widely used, the advent of CRISPR-based genomic editing techniques allows for nuanced exploration into the manners in which sphingolipids influence various stages of viral infections. Here we describe some of these critical considerations needed in designing studies utilizing genomic editing techniques for manipulating the sphingolipid metabolic pathway, as well as the current body of literature regarding how viruses depend on the products of this pathway. Here, we highlight the ways in which sphingolipids affect viruses as these pathogens interact with and influence their host cell and describe some of the many open questions remaining in the field.


Subject(s)
Sphingolipids , Virus Diseases , Humans , Sphingolipids/metabolism , Membrane Lipids , Ceramides/metabolism , Sphingosine/metabolism
6.
J Am Chem Soc ; 144(31): 13987-13995, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35900117

ABSTRACT

In this perspective article, we describe the current status of lipid tools for studying host lipid-virus interactions at the cellular level. We discuss the potential lipidomic changes that viral infections impose on host cells and then outline the tools available and the resulting options to investigate the host cell lipid interactome. The future outcome will reveal new targets for treating virus infections.


Subject(s)
Virus Diseases , Host-Pathogen Interactions , Humans , Lipids , Virus Diseases/drug therapy
7.
Nat Commun ; 13(1): 3487, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35715395

ABSTRACT

A comprehensive understanding of host dependency factors for SARS-CoV-2 remains elusive. Here, we map alterations in host lipids following SARS-CoV-2 infection using nontargeted lipidomics. We find that SARS-CoV-2 rewires host lipid metabolism, significantly altering hundreds of lipid species to effectively establish infection. We correlate these changes with viral protein activity by transfecting human cells with each viral protein and performing lipidomics. We find that lipid droplet plasticity is a key feature of infection and that viral propagation can be blocked by small-molecule glycerolipid biosynthesis inhibitors. We find that this inhibition was effective against the main variants of concern (alpha, beta, gamma, and delta), indicating that glycerolipid biosynthesis is a conserved host dependency factor that supports this evolving virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Lipids , Viral Proteins
8.
bioRxiv ; 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35194611

ABSTRACT

A comprehensive understanding of host dependency factors for SARS-CoV-2 remains elusive. We mapped alterations in host lipids following SARS-CoV-2 infection using nontargeted lipidomics. We found that SARS-CoV-2 rewires host lipid metabolism, altering 409 lipid species up to 64-fold relative to controls. We correlated these changes with viral protein activity by transfecting human cells with each viral protein and performing lipidomics. We found that lipid droplet plasticity is a key feature of infection and that viral propagation can be blocked by small-molecule glycerolipid biosynthesis inhibitors. We found that this inhibition was effective against the main variants of concern (alpha, beta, gamma, and delta), indicating that glycerolipid biosynthesis is a conserved host dependency factor that supports this evolving virus.

9.
J Nat Prod ; 85(1): 176-184, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35007072

ABSTRACT

As a complement to vaccines, small-molecule therapeutic agents are needed to treat or prevent infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants, which cause COVID-19. Affinity selection-mass spectrometry was used for the discovery of botanical ligands to the SARS-CoV-2 spike protein. Cannabinoid acids from hemp (Cannabis sativa) were found to be allosteric as well as orthosteric ligands with micromolar affinity for the spike protein. In follow-up virus neutralization assays, cannabigerolic acid and cannabidiolic acid prevented infection of human epithelial cells by a pseudovirus expressing the SARS-CoV-2 spike protein and prevented entry of live SARS-CoV-2 into cells. Importantly, cannabigerolic acid and cannabidiolic acid were equally effective against the SARS-CoV-2 alpha variant B.1.1.7 and the beta variant B.1.351. Orally bioavailable and with a long history of safe human use, these cannabinoids, isolated or in hemp extracts, have the potential to prevent as well as treat infection by SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Cannabinoids/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Benzoates/pharmacology , COVID-19/prevention & control , Cannabinoids/chemistry , Cannabinoids/metabolism , Chlorocebus aethiops , Humans , Ligands , Mass Spectrometry , Models, Molecular , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
10.
Curr Opin Chem Biol ; 65: 42-48, 2021 12.
Article in English | MEDLINE | ID: mdl-34119744

ABSTRACT

We present recently developed strategies to manipulate lipid levels in live cells by light. We focus on photoremovable protecting groups that lead to subcellular restricted localization and activation and discuss alternative techniques. We emphasize the development of organelle targeting of caged lipids and discuss recent advances in chromatic orthogonality of caging groups for future applications.


Subject(s)
Lipids
11.
Cell Rep ; 34(7): 108737, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33545052

ABSTRACT

In the ongoing coronavirus disease 2019 (COVID-19) pandemic, there remain unanswered questions regarding the nature and significance of the humoral immune response toward other coronavirus infections. Here, we investigate the cross-reactivity of antibodies raised against the first severe acute respiratory syndrome coronavirus (SARS-CoV) for their reactivity toward SARS-CoV-2. We extensively characterize a selection of 10 antibodies covering all of the SARS-CoV structural proteins: spike, membrane, nucleocapsid, and envelope. Although nearly all of the examined SARS-CoV antibodies display some level of reactivity to SARS-CoV-2, we find only partial cross-neutralization for the spike antibodies. The implications of our work are two-fold. First, we establish a set of antibodies with known reactivity to both SARS-CoV and SARS-CoV-2, which will allow further study of both viruses. Second, we provide empirical evidence of the high propensity for antibody cross-reactivity between distinct strains of human coronaviruses, which is critical information for designing diagnostic and vaccine strategies for COVID-19.


Subject(s)
Antibodies, Viral/immunology , SARS-CoV-2/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/immunology , COVID-19/virology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Reactions/immunology , HEK293 Cells , Humans , Immunity, Humoral/immunology , Pandemics , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
12.
bioRxiv ; 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32766589

ABSTRACT

There is currently a lack of biological tools to study the replication cycle and pathogenesis of SARS-CoV-2, the etiological agent of COVID-19. Repurposing the existing tools, including antibodies of SARS-CoV, is an effective way to accelerate the development of therapeutics for COVID-19. Here, we extensively characterized antibodies of the SARS-CoV structural proteins for their cross-reactivity, experimental utility, and neutralization of SARS-CoV-2. We assessed a total of 10 antibodies (six for Spike, two for Membrane, and one for Nucleocapsid and Envelope viral protein). We evaluated the utility of these antibodies against SARS-CoV-2 in a variety of assays, including immunofluorescence, ELISA, biolayer interferometry, western blots, and micro-neutralization. Remarkably, a high proportion of the antibodies we tested showed cross-reactivity, indicating a potentially generalizable theme of cross-reactivity between SARS-CoV and SARS-CoV-2 antibodies. These antibodies should help facilitate further research into SARS-CoV-2 basic biology. Moreover, our study provides critical information about the propensity of SARS-CoV antibodies to cross-react with SARS-CoV-2 and highlights its relevance in defining the clinical significance of such antibodies to improve testing and guide the development of novel vaccines and therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL