Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Rheum Dis ; 82(2): 272-282, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36175067

ABSTRACT

OBJECTIVES: Synovium is acutely affected following joint trauma and contributes to post-traumatic osteoarthritis (PTOA) progression. Little is known about discrete cell types and molecular mechanisms in PTOA synovium. We aimed to describe synovial cell populations and their dynamics in PTOA, with a focus on fibroblasts. We also sought to define mechanisms of synovial Wnt/ß-catenin signalling, given its emerging importance in arthritis. METHODS: We subjected mice to non-invasive anterior cruciate ligament rupture as a model of human joint injury. We performed single-cell RNA-sequencing to assess synovial cell populations, subjected Wnt-GFP reporter mice to joint injury to study Wnt-active cells, and performed intra-articular injections of the Wnt agonist R-spondin 2 (Rspo2) to assess whether gain of function induced pathologies characteristic of PTOA. Lastly, we used cultured fibroblasts, macrophages and chondrocytes to study how Rspo2 orchestrates crosstalk between joint cell types. RESULTS: We uncovered seven distinct functional subsets of synovial fibroblasts in healthy and injured synovium, and defined their temporal dynamics in early and established PTOA. Wnt/ß-catenin signalling was overactive in PTOA synovium, and Rspo2 was strongly induced after injury and secreted exclusively by Prg4hi lining fibroblasts. Trajectory analyses predicted that Prg4hi lining fibroblasts arise from a pool of Dpp4+ mesenchymal progenitors in synovium, with SOX5 identified as a potential regulator of this emergence. We also showed that Rspo2 orchestrated pathological crosstalk between synovial fibroblasts, macrophages and chondrocytes. CONCLUSIONS: Synovial fibroblasts assume distinct functional identities during PTOA in mice, and Prg4hi lining fibroblasts secrete Rspo2 that may drive pathological joint crosstalk after injury.


Subject(s)
Osteoarthritis , Thrombospondins , Animals , Humans , Mice , Chondrocytes/metabolism , Fibroblasts/metabolism , Osteoarthritis/pathology , Synovial Membrane/metabolism , Wnt Signaling Pathway , Thrombospondins/metabolism
2.
J Colloid Interface Sci ; 342(1): 128-34, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19939401

ABSTRACT

Expanded use of nuclear fuel as an energy resource and terrorist threats to public safety clearly require the development of new state-of-the-art technologies and improvement of safety measures to minimize the exposure of people to radiation and the accidental release of radiation into the environment. The precision in radionuclide metrology is currently limited by the source quality rather than the detector performance. Electrodeposition is a commonly used technique to prepare massless radioactive sources. Unfortunately, the radioactive sources prepared by the conventional electrodeposition method produce poor resolution in alpha spectrometric measurements. Preparing radioactive sources with better resolution and higher yield in the alpha spectrometric range by integrating magnetohydrodynamic convection with the conventional electrodeposition technique was proposed and tested by preparing mixed alpha sources containing uranium isotopes ((238)U, (234)U), plutonium ((239)Pu), and americium ((241)Am) for alpha spectrometric determination. The effects of various parameters such as magnetic flux density, deposition current and time, and pH of the sample solution on the formed massless radioactive sources were also experimentally investigated.

3.
Anal Bioanal Chem ; 390(2): 521-30, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18049814

ABSTRACT

Sector field inductively coupled plasma mass spectrometry (SF-ICPMS) has been used with analysis of solution samples and laser ablation (LA) of electrodeposited alpha sources to characterize plutonium activities and atom ratios prevalent in the western USA. A large set of surface soils and attic dusts were previously collected from many locations in the states of Nevada, Utah, Arizona, and Colorado; specific samples were analyzed herein to characterize the relative contributions of stratospheric fallout vs. Nevada Test Site (NTS) plutonium. This study illustrates two different ICPMS-based analytical strategies that are successful in fingerprinting Pu in environmental soils and dusts. Two specific datasets have been generated: (1) soils are leached with HNO3-HCl, converted into electrodeposited alpha sources, counted by alpha spectrometry, then re-analyzed using laser ablation SF-ICPMS; (2) samples are completely dissolved by treatment with HNO3-HF-H3BO3, Pu fractions are prepared by extraction chromatography, and analyzed by SF-ICPMS. Optimal laser ablation and ICPMS conditions were determined for the re-analysis of archived alpha spectrometry "planchette" sources. The best ablation results were obtained using a large spot size (200 microm), a defocused beam, full repetition rate (20 Hz) and scan rate (200 microm s(-1)); LA-ICPMS data were collected with a rapid electrostatic sector scanning experiment. Less than 10% of the electroplated surface area is consumed in the LA-ICPMS analysis, which would allow for multiple re-analyses. Excellent agreement was found between (239+240)Pu activities determined by LA-ICPMS vs. activity results obtained by alpha spectrometry for the same samples ten years earlier. LA-ICPMS atom ratios for 240Pu/239Pu and 241Pu/239Pu range from 0.038-0.132 and 0.00034-0.00168, respectively, and plot along a two-component mixing line (241Pu/239Pu = 0.013 [240Pu/239Pu] - 0.0001; r2 = 0.971) with NTS and global fallout end-members. A rapid total dissolution procedure, followed by extraction chromatography and SF-ICPMS solution Pu analysis, generates excellent agreement with certified (239+240)Pu activities for standard reference materials NIST 4350b, NIST 4353, NIST 4357, and IAEA 385. (239+240)Pu activities and atom ratios determined by total dissolution reveal isotopic information in agreement with the LA-ICPMS dataset regarding the ubiquitous mixing of NTS and stratospheric fallout Pu sources in the regional environment. For several specific samples, the total dissolution method reveals that Pu is incompletely recovered by simpler HNO3-HCl leaching procedures, since some of the Pu originating from the NTS is contained in refractory siliceous particles.


Subject(s)
Mass Spectrometry/methods , Plutonium/analysis , Soil/analysis , Plutonium/chemistry , Southwestern United States
4.
Sci Total Environ ; 350(1-3): 248-60, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16227084

ABSTRACT

The 234U/238U activity ratio (AR) is extensively used as a geochemical tool to investigate movement and flow relationships in major hydrological units, information that is particularly important when considering nuclear waste disposal. It is usually determined by radiochemical separation and concentration of U, followed by energy-specific alpha particle counting. Alternatively, sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) can be used to measure U isotopic signatures directly in groundwater samples. Here, we compare the two methods for samples of spring and groundwater from southern Nevada. Results for samples stripped from stainless steel disks, previously used for alpha counting, and for splits of groundwater samples show good agreement between the methods. However, SF-ICP-MS is faster, requires much less sample, and produces essentially no waste. We demonstrate applicability of the SF-ICP-MS method for groundwater collected from over 25 wells on and near the Nevada Test Site during 2003. Uranium concentrations ranged from 0.17 to 9.87 ppb with a mean of 2.9 ppb, while 234U/238U AR values ranged from 1.9 to 11.5 with a mean of 4.3. Groundwater collected from deep wells in the northern part of the study area tended to have moderate to high U concentrations and AR values, possibly representative of older volcanic-type waters, whereas groundwater from wells in the Fortymile Wash area had relatively low AR and U concentrations, suggesting younger waters with a possible local recharge component.


Subject(s)
Fresh Water/analysis , Mass Spectrometry/methods , Radiation Monitoring/methods , Uranium/analysis , Water Pollutants, Radioactive/analysis , Environmental Monitoring , Magnetics , Nevada
5.
J Environ Radioact ; 78(3): 331-42, 2005.
Article in English | MEDLINE | ID: mdl-15511566

ABSTRACT

Alpha particles have been measured coming from the surfaces of rocks covered with dark red-brown rock varnish, as well as rocks that appear to have little, if any, varnish. A pronounced peak at 5.3 MeV indicates the presence of 210Po, a short-lived natural-radioactive element. Surface activities for 33 samples range from 0.008 Bq/cm2 to 0.065 Bq/cm2. It is estimated that this nuclide is concentrated 10(11) times in these paper-thin coatings above its concentration in ground-level air. Gamma rays from the decay of 137Cs, a product of testing nuclear weapons some 50 years ago, were also detected. Analysis of samples of varnish stripped from the rock revealed traces of 239,240Pu and 238Pu. The presence of all of these isotopes strongly supports the theory that varnish films derive their building blocks from the atmosphere and, with time, all rocks in arid environments will become coated.


Subject(s)
Alpha Particles , Geology , Polonium/chemistry , Atmosphere , Cesium Radioisotopes/analysis , Environmental Monitoring , Geological Phenomena , Kinetics
6.
Health Phys ; 85(4): 457-65, 2003 Oct.
Article in English | MEDLINE | ID: mdl-13678286

ABSTRACT

Recent wildland fires near two U.S. nuclear facilities point to a need to rapidly identify the presence of airborne plutonium during incidents involving the potential release of radioactive materials. Laboratory turn-around times also need to be shortened for critical samples collected in the earliest stages of radiological emergencies. This note discusses preliminary investigations designed to address both these problems. The methods under review are same day high-resolution alpha spectroscopy to screen air filter samples for the presence of plutonium and inductively coupled plasma mass spectrometry to perform sensitive plutonium analyses. Thus far, using modified alpha spectroscopy techniques, it has been possible to reliably identify the approximately 5.2 MeV emission of 239Pu on surrogate samples (air filters artificially spiked with plutonium after collection) even though the primary alpha-particle emissions of plutonium are, as expected, superimposed against a natural alpha radiation background dominated by short-lived radon and thoron progeny (approximately 6-9 MeV). Several processing methods were tested to prepare samples for analysis and shorten laboratory turn-around time. The most promising technique was acid-leaching of air filter samples using a commercial open-vessel microwave digestion system. Samples prepared in this way were analyzed by both alpha spectroscopy (as a thin-layer iron hydroxide co-precipitate) and inductively coupled plasma mass spectrometry. The detection levels achieved for 239Pu--approximately 1 mBq m(-3) for alpha spectroscopy screening, and, < 0.1 mBq m(-3) for inductively coupled plasma mass spectrometry analysis--are consistent with derived emergency response levels based on EPA's Protective Action Guides, and samples can be evaluated in 36 to 72 h. Further, if samples can be returned to a fixed-laboratory and processed immediately, results from mass spectrometry could be available in as little as 24 h. When fully implemented, these techniques have the potential to provide useful information and improved operational flexibility to emergency planners and first-responders during radiological emergencies.


Subject(s)
Air Pollution, Radioactive , Mass Spectrometry/methods , Plutonium/analysis , Spectrum Analysis/methods , Microwaves , Radiation Monitoring , Time Factors
7.
J Environ Radioact ; 60(1-2): 165-87, 2002.
Article in English | MEDLINE | ID: mdl-11936606

ABSTRACT

Three underground nuclear tests representing approximately 15-16% of the total effective energy released during the United States underground nuclear testing program from 1951 to 1992 were conducted at Amchitka Island, Alaska. In 1996, Greenpeace reported that leakage of radionuclides, 241Am and 239+240Pu, from these underground tests to the terrestrial and freshwater environments had been detected. In response to this report, a federal, state, tribal and non-governmental team conducted a terrestrial and freshwater radiological sampling program in 1997. Additional radiological sampling was conducted in 1998. An assessment of the reported leakage to the freshwater environment was evaluated by assessing 3H values in surface waters and 240Pu/239Pu ratios in various sample media. Tritium values ranged from 0.41 Bq/l +/- 0.11 two sigma to 0.74 Bq/1 +/- 0.126 two sigma at the surface water sites sampled, including the reported leakage sites. Only at the Long Shot test site, where leakage of radioactive gases to the near-surface occurred in 1965. were higher 3H levels of 5.8 Bq/1 +/- 0.19 two sigma still observed in 1997, in mud pit #3. The mean 240Pu/239Pu for all of the Amchitka samples was 0.1991 +/- 0.0149 one standard deviation, with values ranging from 0.1824 +/- 1.43% one sigma to 0.2431 +/- 6.56% one sigma. The measured 3H levels and 240Pu/239Pu ratios in freshwater moss and sediments at Amchitka provide no evidence of leakage occurring at the sites reported by Buske and Miller (1998 Nuclear-Weapons-Free America and Alaska Community Action on Toxics, Anchorage, Ak, p.38) and Miller and Buske (1996 Nuclear Flashback: The Return to Anchitka, p.35). It was noted that the marine sample; 240Pu/239Pu ratios are statistically different than the global fallout ratios presented by Krey et al. (1976) and Kelley, Bond, and Beasley (1999). The additional non-fallout component 240Pu/239Pu ratio, assuming a single unique source, necessary to modify the global fallout 240Pu/239Pu ratio to that measured in the marine samples is on the order of 0.65 (Hameedi, Efurd, Harmon, Valette-Silver, & Robertson, 1999; Kelley et al., 1999). While this potentially suggests another plutonium source, such as high burn-up nuclear reactor fuel, rather than underground nuclear tests, the uncertainties in analyses and environmental processes need to be fully assessed before any conclusion can be reached. Further work is needed to evaluate these findings and to support any radiological assessment of the marine environment surrounding Amchitka. Based on geohydrological testing and modeling, leakage from the Amchitka Underground Nuclear Tests is projected to occur to the marine environment (Claassen, 1978; Fenske, 1972; Wheatcraft, 1995).


Subject(s)
Nuclear Warfare , Radioactive Fallout/analysis , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis , Alaska , Americium/analysis , Environmental Monitoring , Plutonium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL