Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(1): 7, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177114

ABSTRACT

Manipulation of the subcellular localization of transcription factors by preventing their shuttling via the nuclear pore complex (NPC) emerges as a novel therapeutic strategy against cancer. One transmembrane component of the NPC is POM121, encoded by a tandem gene locus POM121A/C on chromosome 7. Overexpression of POM121 is associated with metabolic diseases (e.g., diabetes) and unfavorable clinical outcome in patients with colorectal cancer (CRC). Peroxisome proliferator-activated receptor-gamma (PPARγ) is a transcription factor with anti-diabetic and anti-tumoral efficacy. It is inhibited by export from the nucleus to the cytosol via the RAS-RAF-MEK1/2-ERK1/2 signaling pathway, a major oncogenic driver of CRC. We therefore hypothesized that POM121 participates in the transport of PPARγ across the NPC to regulate its transcriptional activity on genes involved in metabolic and tumor control. We found that POM121A/C mRNA was enriched and POM121 protein co-expressed with PPARγ in tissues from CRC patients conferring poor prognosis. Its interactome was predicted to include proteins responsible for tumor metabolism and immunity, and in-silico modeling provided insights into potential 3D structures of POM121. A peptide region downstream of the nuclear localization sequence (NLS) of POM121 was identified as a cytoplasmic interactor of PPARγ. POM121 positivity correlated with the cytoplasmic localization of PPARγ in patients with KRAS mutant CRC. In contrast, POM121A/C silencing by CRISPR/Cas9 sgRNA or siRNA enforced nuclear accumulation of PPARγ and activated PPARγ target genes promoting lipid metabolism and cell cycle arrest resulting in reduced proliferation of human CRC cells. Our data suggest the POM121-PPARγ axis as a potential drugable target in CRC.


Subject(s)
Neoplasms , Nuclear Pore , Humans , Nuclear Pore/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , RNA, Guide, CRISPR-Cas Systems , Nuclear Pore Complex Proteins/metabolism , Transcription Factors/metabolism , Neoplasms/metabolism , Membrane Glycoproteins/metabolism
2.
J Exp Med ; 214(6): 1711-1724, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28442553

ABSTRACT

The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) is characterized by immune tolerance, which enables disease to progress unabated by adaptive immunity. However, the drivers of this tolerogenic program are incompletely defined. In this study, we found that NLRP3 promotes expansion of immune-suppressive macrophages in PDA. NLRP3 signaling in macrophages drives the differentiation of CD4+ T cells into tumor-promoting T helper type 2 cell (Th2 cell), Th17 cell, and regulatory T cell populations while suppressing Th1 cell polarization and cytotoxic CD8+ T cell activation. The suppressive effects of NLRP3 signaling were IL-10 dependent. Pharmacological inhibition or deletion of NLRP3, ASC (apoptosis-associated speck-like protein containing a CARD complex), or caspase-1 protected against PDA and was associated with immunogenic reprogramming of innate and adaptive immunity within the TME. Similarly, transfer of PDA-entrained macrophages or T cells from NLRP3-/- hosts was protective. These data suggest that targeting NLRP3 holds the promise for the immunotherapy of PDA.


Subject(s)
Adaptive Immunity , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Signal Transduction , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Caspase 1/deficiency , Caspase 1/metabolism , Cell Differentiation , Cell Proliferation , Cellular Reprogramming , Gene Deletion , Humans , Immunosuppression Therapy , Mice, Inbred C57BL , Nod2 Signaling Adaptor Protein/metabolism , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , T-Lymphocytes/immunology , Tumor Microenvironment , Pancreatic Neoplasms
3.
Case Rep Surg ; 2016: 7273801, 2016.
Article in English | MEDLINE | ID: mdl-27803835

ABSTRACT

This case describes an intraoperative incidental finding and surgical removal of ectopic liver tissue attached to the gallbladder during a standard laparoscopic cholecystectomy for acute cholecystitis. These anomalies are rare, with interesting associations and possible clinically relevant complications. The details of the case, along with a brief literature review of embryology, common ectopic sites, and associations/complications, are presented in this paper. Since laparoscopic cholecystectomy is a very common procedure, it is important to increase vigilance of ectopic liver tissues during surgeries to minimize complications and provide optimal management.

SELECTION OF CITATIONS
SEARCH DETAIL
...