Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(2): 2422-2431, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38250400

ABSTRACT

This research describes the fabrication of the porous trimethylamine (TMA)-grafted anion exchange membrane (AEM) over a phase inversion process. The synthesis of the generated AEM was verified using Fourier transform infrared (FTIR) spectroscopy. The fabricated porous AEM showed 240% water uptake (WR), 1.45 mg/g ion exchange capacity (IEC), and a 9.0% linear expansion ratio (LER) at 25 °C. It exhibited a porous structure and higher thermal stability. It was utilized to remove eosin B (EB) from wastewater via the process of adsorption. The adsorption capacity of EB increased with time and the starting concentration of EB while decreasing with temperature and the AEM dosage. Adsorption isotherm investigation results showed that EB adsorption onto the porous AEM followed the Langmuir isotherm because the value of correlation coefficient (R2 = 0.992) was close to unity. Because the correlation coefficient was close to one, it was determined through adsorption kinetic experiments that the adsorption of EB on the produced porous AEM was suitable for a pseudo-second-order model. Thermodynamic study about process of EB adsorption on the porous AEM revealed that there was an exothermic (ΔH° = -16.60 kJ/mol) and spontaneous process.

3.
Chemosphere ; 321: 138006, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36731668

ABSTRACT

Commercially available QPPO/PVA based anion exchange membrane (AEM) BIII was to inquire the percentage discharge of anionic dye Eosin-B (EB) at terrain temperature from wastewater. The impact of EB initial concentration, membrane dosage, ionic strength, contact time and temperature on EB percentage removal was contemplated. The EB percentage removal was increased from 22 to 99.56% and 38.15-99.56% with contact time and membrane dosage respectively while decreased from 99.56 to 29%, 99.56 to 54.61% and 99.56 to 92.22% with enhancing initial concentration of EB, ionic strength and temperature respectively. Nonlinear isotherm models were utilized to demonstrate EB adsorption onto AEM BIII. Attained results exhibited that nonliner Freundlich isotherm model best fitted to EB adsorption onto AEM BIII. For EB adsorption onto AEM BIII, adsorption kinetics were inquired in detail by using several kinetic models but EB adsorption nicely fitted to pseudo-second-order kinetics. Similarly thermodynamic analysis was performed and results pointed to an exothermic adsorption of EB onto AEM BIII. The membrane could be reused for four concecutive cycles with loosing its efficiency.


Subject(s)
Wastewater , Water Pollutants, Chemical , Coloring Agents , Eosine Yellowish-(YS) , Hydrogen-Ion Concentration , Thermodynamics , Adsorption , Kinetics , Anions
4.
ACS Omega ; 7(30): 26788-26799, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936400

ABSTRACT

In this research, the development of a novel brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO)-based homogeneous anion exchange membrane (AEM) via the solution casting method was reported. Fourier transform infrared spectroscopy was used to confirm the successful development of the BPPO-based AEM. The prepared AEM showed excellent thermal stability. It exhibited an ion exchange capacity of 2.66 mg/g, a water uptake (W R) of 68%, and a linear swelling ratio of 31%. Methyl orange (MO), an anionic dye, was used as a model pollutant to evaluate the ion exchange ability of the membrane. The adsorption capacity of MO increased with the increase in contact time, membrane dosage (adsorbent), temperature, and pH while declined with the increase in initial concentration of MO in an aqueous solution and molarity of NaCl. Adsorption isotherm study showed that adsorption of MO was fitted well to the Freundlich adsorption isotherm because the value of the correlation coefficient (R 2 = 0.974) was close to unity. Adsorption kinetics study showed that adsorption of MO fitted well to the pseudo-second-order kinetic model. Adsorption thermodynamics evaluation represented that adsorption of MO was an endothermic (ΔH° = 18.72 kJ/mol) and spontaneous process. The AEM presented a maximum adsorption capacity of 18 mg/g. Moreover, the regeneration of the prepared membrane confirmed its ability to be utilized for three consecutive cycles. The developed BPPO-based AEM was an outstanding candidate for adsorption of MO from an aqueous solution.

5.
Chem Biodivers ; 19(4): e202100843, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35213767

ABSTRACT

In our continuous screening for bioactive microbial natural products, the culture extracts of a terrestrial Actinomycetes sp. GSCW-51 yielded two new metabolites, i. e., 5-hydroxymethyl-3-(1-hydroxy-6-methyl-7-oxooctyl)dihydrofuran-2(3H)-one (1), 5-hydroxymethyl-3-(1,7-dihydroxy-6-methyloctyl)dihydrofuran-2(3H)-one (2), and two known compounds; 5'-methylthioinosine (3), and 5'-methylthioinosine sulfoxide (4), which are isolated first time from any natural source, along with four known compounds (5-8). The structures of the new compounds were deduced by HR-ESI-MS, 1D and 2D NMR data, and in comparison with related compounds from the literature. Additionally, owing to the current COVID-19 pandemic situation, we also computationally explored the therapeutic potential of our isolated compounds against SARS-CoV-2. Compound 4 showed the best binding energies of -6.2 and -6.6 kcal/mol for Mpro and spike proteins, respectively. The intermolecular interactions were also studied using 2-D and 3-D imagery, which also supported the binding energies as well as put several insights under the spotlight. Furthermore, Lipinski's rule of 5 was used to predict the drug likeness of compounds 1-4, which indicated all compounds obey Lipinski's rule of 5. The study of bioavailability radars of the compounds 1-4 also confirmed their drug likeness properties where all the five crucial drug likeness parameters are in color area, which is safe to be used as drugs. Our isolation and computational findings highly encourage the scientific community to do further in vitro and in vivo studies of compounds 1-4.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Actinomyces , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Thioinosine
SELECTION OF CITATIONS
SEARCH DETAIL
...