Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 37(11): 2745-2757, 2018 11.
Article in English | MEDLINE | ID: mdl-30359486

ABSTRACT

Since the 1940s, effluent toxicity testing has been used to assess potential ecological impacts of effluents and help determine necessary treatment options for environmental protection prior to release. Strategic combinations of toxicity tests, analytical tools, and biological monitoring have been developed. Because the number of vertebrates utilized in effluent testing is thought to be much greater than that used for individual chemical testing, there is a new need to develop strategies to reduce the numbers of vertebrates (i.e., fish) used. This need will become more critical as developing nations begin to use vertebrates in toxicity tests to assess effluent quality. A workshop was held to 1) assess the state of science in effluent toxicity testing globally; 2) determine current practices of regulators, industry, private laboratories, and academia; and 3) explore alternatives to vertebrate (fish) testing options and the inclusion of modified/new methods and approaches in the regulatory environment. No single approach was identified, because of a range of factors including regulatory concerns, validity criteria, and wider acceptability of alternatives. However, a suite of strategies in a weight-of-evidence approach would provide the flexibility to meet the needs of the environment, regulators, and the regulated community; and this "toolbox" approach would also support reduced reliance on in vivo fish tests. The present Focus article provides a brief overview of wastewater regulation and effluent testing approaches. Alternative methodologies under development and some of the limitations and barriers to regulatory approaches that can be selected to suit individual country and regional requirements are described and discussed. Environ Toxicol Chem 2018;37:2745-2757. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Animal Testing Alternatives/methods , Internationality , Risk Assessment , Toxicity Tests/methods , Water Pollutants, Chemical/analysis , Animals , Humans , Social Control, Formal
2.
Environ Toxicol Chem ; 34(12): 2864-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26111584

ABSTRACT

The threshold of toxicological concern (TTC) concept is well established for assessing human safety of food-contact substances and has been reapplied for a variety of endpoints, including carcinogenicity, teratogenicity, and reproductive toxicity. The TTC establishes an exposure level for chemicals below which no appreciable risk to human health or the environment is expected, based on a de minimis value for toxicity identified for many chemicals. Threshold of toxicological concern approaches have benefits for screening-level risk assessments, including the potential for rapid decision-making, fully utilizing existing knowledge, reasonable conservativeness for chemicals used in lower volumes (low production volume chemicals (e.g., < 1 t/yr), and reduction or elimination of unnecessary animal tests. Higher production volume chemicals (>1 t/yr) would in principle always require specific information because of the presumed higher exposure potential. The TTC approach has found particular favor in the assessment of chemicals used in cosmetics and personal care products, as well as other chemicals traditionally used in low volumes. Use of the TTC in environmental safety is just beginning, and initial attempts are being published. Key questions focus on hazard extrapolation of diverse taxa across trophic levels, importance of mode of action, and whether safe concentrations for ecosystems estimated from acute or chronic toxicity data are equally useful and in what contexts. The present study provides an overview of the theoretical basis for developing an ecological (eco)-TTC, with an initial exploration of chemical assessment and boundary conditions for use. An international collaboration under the International Life Sciences Institute Health and Environmental Sciences Institute has been established to address challenges related to developing and applying useful eco-TTC concepts.


Subject(s)
Ecology/methods , Environmental Monitoring/methods , Environmental Pollutants/toxicity , Hazardous Substances/toxicity , Animals , Ecosystem , Food Contamination/analysis , Food Contamination/prevention & control , Humans , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...