Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1611: 460596, 2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31610920

ABSTRACT

Lecithins are phospholipidic mixtures that can be part of microemulsions and liposomes. In this work, ready-to-use preparations of lecithin have been tested as pseudostationary and mobile phases in EKC and LC, respectively. The selectivity of two EKC systems, one based on lecithin microemulsions (LMEEKC) and another on liposomes (LLEKC), and of a LC system based on lecithin microemulsions (MELC) has been evaluated through the solvation parameter model. In all cases, solute volume and hydrogen-bond basicity are the main descriptors that drive the partition process. While solute volume favors the retention of solutes, hydrogen-bond basicity has the contrary effect. In lecithin-based EKC systems the hydrogen-bond acidity of the solute leads to a higher retention while in the lecithin-based LC system a minor retention is produced. The three lecithin systems have been compared through the solvation parameter model to other chromatographic systems, most of them containing phospholipids. Principal component analysis reveals that lecithin systems cluster together with the other EKC systems based on phospholipids, with an immobilized artificial membrane (IAM) LC system, with the octanol/water reference partition system, and with a SDS-based microemulsion. Thus, they all show similar selectivity. However, the great advantage of using the ready-to use lecithin systems is that the laborious liposome preparation is avoided, and that their commercial availability makes them more affordable than IAM LC columns. Finally, taking into account that lecithin has a high semblance to the mammalian cell membranes composition, the ability of the three lecithin systems to mimic the pass of the solutes through the membranes has been evaluated. Experimental determinations have demonstrated that the skin partition of neutral solutes can be easily emulated, especially using the lecithin-microemulsion EKC method. The model is robust and shows good prediction ability.


Subject(s)
Chromatography, Liquid/instrumentation , Lecithins/chemistry , Liposomes/chemistry , Chromatography, Liquid/methods , Emulsions/chemistry , Hydrogen Bonding , Membranes, Artificial , Octanols/chemistry , Phospholipids/chemistry , Principal Component Analysis
2.
Anal Chem ; 89(15): 7996-8003, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28641410

ABSTRACT

Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.


Subject(s)
Aquatic Organisms/drug effects , Chromatography/methods , Models, Biological , Water Pollutants, Chemical/toxicity , Animals , Bacteria/drug effects , Chromatography/instrumentation , Chromatography, High Pressure Liquid/instrumentation , Chromatography, Micellar Electrokinetic Capillary/instrumentation , Chromatography, Micellar Electrokinetic Capillary/methods , Cladocera/drug effects , Cladocera/growth & development , Larva/drug effects , Principal Component Analysis , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...