Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Neurology ; 81(3): 256-63, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23771486

ABSTRACT

OBJECTIVE: The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma. METHODS: Twenty patients with presumptive or known CNS lesions underwent MRI study. Eighteen patients received both gadolinium-based contrast agents (GBCAs) and 1 of 2 USPIO contrast agents (ferumoxytol and ferumoxtran-10) 24 hours apart, which allowed direct comparative analysis. The remaining 2 patients had only USPIO-enhanced MRI because of a renal contraindication to GBCA. Conventional T1- and T2-weighted MRI were acquired before and after contrast administration in all patients, and perfusion MRI for relative cerebral blood volume (rCBV) assessment was obtained in all 9 patients receiving ferumoxytol. RESULTS: USPIO-enhanced MRI showed an equal number of enhancing brain lesions in 9 of 18 patients (50%), more enhancing lesions in 2 of 18 patients (11%), and fewer enhancing lesions in 3 of 18 patients (17%) compared with GBCA-enhanced MRI. Four of 18 patients (22%) showed no MRI enhancement. Dynamic susceptibility-weighted contrast-enhanced perfusion MRI using ferumoxytol showed low rCBV (ratio <1.0) in 3 cases of demyelination or inflammation, modestly elevated rCBV in 5 cases of CNS lymphoma or lymphoproliferative disorder (range: 1.3-4.1), and no measurable disease in one case. CONCLUSIONS: This study showed that USPIO-enhanced brain MRI can be useful in the diagnosis of CNS inflammatory disorders and lymphoma, and is also useful for patients with renal compromise at risk of nephrogenic systemic fibrosis who are unable to receive GBCA.


Subject(s)
Brain Diseases/diagnosis , Brain/pathology , Central Nervous System Neoplasms/diagnosis , Ferric Compounds , Lymphoma/diagnosis , Nanoparticles , Adult , Aged , Brain Diseases/pathology , Central Nervous System Neoplasms/pathology , Female , Humans , Inflammation/diagnosis , Inflammation/pathology , Lymphoma/pathology , Magnetic Resonance Imaging , Male , Middle Aged
2.
Nucleic Acids Res ; 34(16): 4495-505, 2006.
Article in English | MEDLINE | ID: mdl-16945950

ABSTRACT

Cells of the central nervous system (CNS) are prone to the devastating consequences of trinucleotide repeat (TNR) expansion. Some CNS cells, including astrocytes, show substantial TNR instability in affected individuals. Since astrocyte enrichment occurs in brain regions sensitive to neurodegeneration and somatic TNR instability, immortalized SVG-A astrocytes were used as an ex vivo model to mimic TNR mutagenesis. Cultured astrocytes produced frequent (up to 2%) CAG.CTG contractions in a sequence-specific fashion, and an apparent threshold for instability was observed between 25 and 33 repeats. These results suggest that cultured astrocytes recapitulate key features of TNR mutagenesis. Furthermore, contractions were influenced by DNA replication through the repeat, suggesting that instability can arise by replication-based mechanisms in these cells. This is a crucial mechanistic point, since astrocytes in the CNS retain proliferative capacity throughout life and could be vulnerable to replication-mediated TNR instability. The presence of interruptions led to smaller but more frequent contractions, compared to a pure repeat, and the interruptions were sometimes deleted to form a perfect tract. In summary, we suggest that CAG.CTG repeat instability in cultured astrocytes is dynamic and replication-driven, suggesting that TNR mutagenesis may be influenced by the proliferative capacity of key CNS cells.


Subject(s)
Astrocytes/chemistry , Trinucleotide Repeat Expansion , Alleles , Cell Line , DNA Replication , Humans
3.
Nucleic Acids Res ; 33(17): 5667-76, 2005.
Article in English | MEDLINE | ID: mdl-16199754

ABSTRACT

Trinucleotide repeats (TNRs) undergo high frequency mutagenesis to cause at least 15 neurodegenerative diseases. To understand better the molecular mechanisms of TNR instability in cultured cells, a new genetic assay was created using a shuttle vector. The shuttle vector contains a promoter-TNR-reporter gene construct whose expression is dependent on TNR length. The vector harbors the SV40 ori and large T antigen gene, allowing portability between primate cell lines. The shuttle vector is propagated in cultured cells, then recovered and analyzed in yeast using selection for reporter gene expression. We show that (CAG*CTG)25-33 contracts at frequencies as high as 1% in 293T and 293 human cells and in COS-1 monkey cells, provided that the plasmid undergoes replication. Hairpin-forming capacity of the repeat sequence stimulated contractions. Evidence for a threshold was observed between 25 and 33 repeats in COS-1 cells, where contraction frequencies increased sharply (up 720%) over a narrow range of repeat lengths. Expression of the mismatch repair protein Mlh1 does not correlate with repeat instability, suggesting contractions are independent of mismatch repair in our system. Together, these findings recapitulate certain features of human genetics and therefore establish a novel cell culture system to help provide new mechanistic insights into CAG*CTG repeat instability.


Subject(s)
DNA Mutational Analysis/methods , Trinucleotide Repeats , Adaptor Proteins, Signal Transducing , Animals , COS Cells , Carrier Proteins , Cell Line , Chlorocebus aethiops , Genetic Vectors , Humans , MutL Protein Homolog 1 , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL