Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 9(3): 943-954, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30696701

ABSTRACT

Goniodysgenesis is a developmental abnormality of the anterior chamber of the eye. It is generally considered to be congenital in dogs (Canis lupus familiaris), and has been associated with glaucoma and blindness. Goniodysgenesis and early-onset glaucoma initially emerged in Border Collies in Australia in the late 1990s and have subsequently been found in this breed in Europe and the USA. The objective of the present study was to determine the genetic basis of goniodysgenesis in Border Collies. Clinical diagnosis was based on results of examinations by veterinary ophthalmologists of affected and unaffected dogs from eleven different countries. Genotyping using the Illumina high density canine single nucleotide variant genotyping chip was used to identify a candidate genetic region. There was a highly significant peak of association over chromosome 17, with a p-value of 2 × 10-13 Expression profiles and evolutionary conservation of candidate genes were assessed using public databases. Whole genome sequences of three dogs with glaucoma, three severely affected by goniodysgenesis and three unaffected dogs identified a missense variant in the olfactomedin like 3 (OLFML3) gene in all six affected animals. This was homozygous for the risk allele in all nine cases with glaucoma and 12 of 14 other severely affected animals. Of 67 reportedly unaffected animals, only one was homozygous for this variant (offspring of parents both with goniodysgenesis who were also homozygous for the variant). Analysis of pedigree information was consistent with an autosomal recessive mode of inheritance for severe goniodysgenesis (potentially leading to glaucoma) in this breed. The identification of a candidate genetic region and putative causative variant will aid breeders to reduce the frequency of goniodysgenesis and the risk of glaucoma in the Border Collie population.


Subject(s)
Anterior Chamber/abnormalities , Extracellular Matrix Proteins/genetics , Glaucoma/genetics , Mutation, Missense , Amino Acid Sequence , Animals , Anterior Chamber/metabolism , Chick Embryo , Dog Diseases/genetics , Dog Diseases/metabolism , Dogs/abnormalities , Eye Proteins/genetics , Female , Gene Expression Regulation , Genome-Wide Association Study , Glaucoma/metabolism , Glaucoma/veterinary , Glycoproteins/genetics , Humans , Male , Mice , Polymorphism, Single Nucleotide , Sequence Alignment , Sequence Analysis, DNA
2.
Nat Genet ; 48(1): 79-83, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26569125

ABSTRACT

Three strikingly different alternative male mating morphs (aggressive 'independents', semicooperative 'satellites' and female-mimic 'faeders') coexist as a balanced polymorphism in the ruff, Philomachus pugnax, a lek-breeding wading bird. Major differences in body size, ornamentation, and aggressive and mating behaviors are inherited as an autosomal polymorphism. We show that development into satellites and faeders is determined by a supergene consisting of divergent alternative, dominant and non-recombining haplotypes of an inversion on chromosome 11, which contains 125 predicted genes. Independents are homozygous for the ancestral sequence. One breakpoint of the inversion disrupts the essential CENP-N gene (encoding centromere protein N), and pedigree analysis confirms the lethality of homozygosity for the inversion. We describe new differences in behavior, testis size and steroid metabolism among morphs and identify polymorphic genes within the inversion that are likely to contribute to the differences among morphs in reproductive traits.


Subject(s)
Birds/genetics , Reproduction/genetics , Sexual Behavior, Animal , Animals , Birds/physiology , Chromosomal Proteins, Non-Histone/genetics , Female , Genetic Linkage , Genome-Wide Association Study , Haplotypes , Male , Polymorphism, Single Nucleotide , Steroids/blood , Steroids/metabolism , Testis/physiology
3.
Article in English | MEDLINE | ID: mdl-26401331

ABSTRACT

The issue of inherited disorders and poor health in pedigree dogs has been widely discussed in recent years. With the advent of genome-wide sequencing technologies and the increasing development of new diagnostic DNA disease tests, the full extent and prevalence of inherited disorders in pedigree dogs is now being realized. In this review we discuss the challenges facing pedigree dog breeds: the common pitfalls and problems associated with combating single gene mediated disorders, phenotypic selection on complex disorders, and ways of managing genetic diversity. Breeding strategies incorporating screening schemes have been shown to be successful in significantly reducing the prevalence of an inherited disorder and improving the overall health in certain breeds. However, with 215 breeds officially recognized by the Kennel Club in the United Kingdom and 396 inherited disorders currently identified, many breeds have reached the point at which successfully breeding away from susceptible individuals at a population-wide scale will require new genomic selection strategies in combination with currently available breeding schemes. Whilst DNA-based tests identifying disease causing mutation(s) remain the most informative and effective approach for single gene disorder disease management, they must be used along with current screening schemes, genomic selection, and pedigree information in breeding programs in the effort to maintain genetic diversity while also significantly reducing the number of inherited disorders in pedigree dogs.

4.
J Hered ; 106(2): 211-5, 2015.
Article in English | MEDLINE | ID: mdl-25534935

ABSTRACT

Sequence variation in the melanocortin-1 receptor (MC1R) gene explains color morph variation in several species of birds and mammals. Ruffs (Philomachus pugnax) exhibit major dark/light color differences in melanin-based male breeding plumage which is closely associated with alternative reproductive behavior. A previous study identified a microsatellite marker (Ppu020) near the MC1R locus associated with the presence/absence of ornamental plumage. We investigated whether coding sequence variation in the MC1R gene explains major dark/light plumage color variation and/or the presence/absence of ornamental plumage in ruffs. Among 821bp of the MC1R coding region from 44 male ruffs we found 3 single nucleotide polymorphisms, representing 1 nonsynonymous and 2 synonymous amino acid substitutions. None were associated with major dark/light color differences or the presence/absence of ornamental plumage. At all amino acid sites known to be functionally important in other avian species with dark/light plumage color variation, ruffs were either monomorphic or the shared polymorphism did not coincide with color morph. Neither ornamental plumage color differences nor the presence/absence of ornamental plumage in ruffs are likely to be caused entirely by amino acid variation within the coding regions of the MC1R locus. Regulatory elements and structural variation at other loci may be involved in melanin expression and contribute to the extreme plumage polymorphism observed in this species.


Subject(s)
Birds/genetics , Feathers , Genetic Variation , Pigmentation/genetics , Receptor, Melanocortin, Type 1/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Genotype , Male , Melanins , Molecular Sequence Data , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
5.
Ecol Evol ; 3(14): 4631-40, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24363892

ABSTRACT

A linkage map of the ruff (Philomachus pugnax) genome was constructed based on segregation analysis of 58 microsatellite loci from 381 captive-bred individuals spanning fourteen breeding years and comprising 64 families. Twenty-eight of the markers were resolved into seven linkage groups and five single marker loci, homologous to known chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) chromosomes. Linkage groups range from 10.1 to 488.7 cM in length and covered a total map distance of 641.6 cM, corresponding to an estimated 30-35% coverage of the ruff genome, with a mean spacing of 22.9 cM between loci. Through comparative mapping, we are able to assign linkage groups Ppu1, Ppu2, Ppu6, Ppu7, Ppu10, Ppu13, and PpuZ to chromosomes and identify several intrachromosomal rearrangements between the homologs of chicken, zebra finch, and ruff microsatellite loci. This is the first linkage map created in the ruff and is a major step toward providing genomic resources for this enigmatic species. It will provide an essential framework for mapping of phenotypically and behaviorally important loci in the ruff.

6.
Biol Lett ; 9(6): 20130653, 2013.
Article in English | MEDLINE | ID: mdl-24196515

ABSTRACT

Maintaining polymorphisms for genes with effects of ecological significance may involve conflicting selection in males and females. We present data from a captive population of ruffs (Philomachus pugnax) showing that a dominant allele controls development into both small, 'female mimic' males ('faeders'), and a previously undescribed class of small 'female faeders'. Most male ruffs have elaborate breeding plumage and display behaviour, but 0.5-1.5% are faeders, which lack both. Females from a captive population previously lacking faeders were bred with two founder faeder males and their faeder sons. The faeders' offspring had a quadrimodal size distribution comprising normal-sized males and females, faeders and atypically small females. By contrast, ornamented males fathered only normal-sized offspring. We conclude that both founding faeders were heterozygous for a faeder allele absent from the original population. This allele is dominant to previously described genes that determine development into independent versus satellite ornamented males. Unlike those genes, the faeder allele is clearly expressed in females. Small body size is a component of the male faeder mating strategy, but provides no obvious benefit to females. Bisexual expression of the gene provides the opportunity to quantify the strength of sexually antagonistic selection on a Mendelian trait.


Subject(s)
Alleles , Charadriiformes/anatomy & histology , Charadriiformes/physiology , Genes, Dominant , Sexual Behavior, Animal , Animals , Body Size , Ecology , Female , Heterozygote , Male , Mating Preference, Animal , Models, Biological , Phenotype , Polymorphism, Genetic , Reproduction , Sex Characteristics , Sex Determination Processes
7.
BMC Genet ; 14: 109, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24256185

ABSTRACT

BACKGROUND: Ruffs (Aves: Philomachus pugnax) possess a genetic polymorphism for male mating behaviour resulting in three permanent alternative male reproductive morphs: (i) territorial 'Independents', (ii) non-territorial 'Satellites', and (iii) female-mimicking 'Faeders'. Development into independent or satellite morphs has previously been shown to be due to a single-locus, two-allele autosomal Mendelian mode of inheritance at the Satellite locus. Here, we use linkage analysis to map the chromosomal location of the Faeder locus, which controls development into the Faeder morph, and draw further conclusions about candidate genes, assuming shared synteny with other birds. RESULTS: Segregation data on the Faeder locus were obtained from captive-bred pedigrees comprising 64 multi-generation families (N = 381). There was no evidence that the Faeder locus was linked to the Satellite locus, but it was linked with microsatellite marker Ppu020. Comparative mapping of ruff microsatellite markers against the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes places the Ppu020 and Faeder loci on a region of chromosome 11 that includes the Melanocortin-1 receptor (MC1R) gene, which regulates colour polymorphisms in numerous birds and other vertebrates. Melanin-based colouration varies with life-history strategies in ruffs and other species, thus the MC1R gene is a strong candidate to play a role in alternative male morph determination. CONCLUSION: Two unlinked loci appear to control behavioural development in ruffs. The Faeder locus is linked to Ppu020, which, assuming synteny, is located on avian chromosome 11. MC1R is a candidate gene involved in alternative male morph determination in ruffs.


Subject(s)
Charadriiformes/genetics , Chromosome Mapping , Genome , Sexual Behavior, Animal/physiology , Animals , Chickens/genetics , Chromosomes/genetics , Chromosomes/metabolism , Female , Genetic Linkage , Genetic Loci , Lod Score , Male , Microsatellite Repeats , Passeriformes/genetics , Phenotype , Receptor, Melanocortin, Type 1/genetics
8.
Ecol Evol ; 2(10): 2485-505, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23145334

ABSTRACT

By next generation transcriptome sequencing, it is possible to obtain data on both nucleotide sequence variation and gene expression. We have used this approach (RNA-Seq) to investigate the genetic basis for differences in plumage coloration and mating strategies in a non-model bird species, the ruff (Philomachus pugnax). Ruff males show enormous variation in the coloration of ornamental feathers, used for individual recognition. This polymorphism is linked to reproductive strategies, with dark males (Independents) defending territories on leks against other Independents, whereas white morphs (Satellites) co-occupy Independent's courts without agonistic interactions. Previous work found a strong genetic component for mating strategy, but the genes involved were not identified. We present feather transcriptome data of more than 6,000 de-novo sequenced ruff genes (although with limited coverage for many of them). None of the identified genes showed significant expression divergence between males, but many genetic markers showed nucleotide differentiation between different color morphs and mating strategies. These include several feather keratin genes, splicing factors, and the Xg blood-group gene. Many of the genes with significant genetic structure between mating strategies have not yet been annotated and their functions remain to be elucidated. We also conducted in-depth investigations of 28 pre-identified coloration candidate genes. Two of these (EDNRB and TYR) were specifically expressed in black- and rust-colored males, respectively. We have demonstrated the utility of next generation transcriptome sequencing for identifying and genotyping large number of genetic markers in a non-model species without previous genomic resources, and highlight the potential of this approach for addressing the genetic basis of ecologically important variation.

SELECTION OF CITATIONS
SEARCH DETAIL
...