Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nature ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839955

ABSTRACT

The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.

2.
Bioconjug Chem ; 34(11): 2077-2088, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37883211

ABSTRACT

Pancreatic islet-reactive B lymphocytes promote Type 1 diabetes (T1D) by presenting an antigen to islet-destructive T cells. Teplizumab, an anti-CD3 monoclonal, delays T1D onset in patients at risk, but additional therapies are needed to prevent the disease entirely. Therefore, bifunctional molecules were designed to selectively inhibit T1D-promoting anti-insulin B cells by conjugating a ligand for the B cell inhibitory receptor CD22 (i.e., CD22L) to insulin, which permit these molecules to concomitantly bind to anti-insulin B cell receptors (BCRs) and CD22. Two prototypes were synthesized: 2:2 insulin-CD22L conjugate on a 4-arm PEG backbone, and 1:1 insulin-CD22L direct conjugate. Transgenic mice (125TgSD) expressing anti-insulin BCRs provided cells for in vitro testing. Cells were cultured with constructs for 3 days, then assessed by flow cytometry. Duplicate wells with anti-CD40 simulated T cell help. A 2-insulin 4-arm PEG control caused robust proliferation and activation-induced CD86 upregulation. Anti-CD40 further boosted these effects. This may indicate that BCR-cross-linking occurs when antigens are tethered by the PEG backbone as soluble insulin alone has no effect. Addition of CD22L via the 2:2 insulin-CD22L conjugate restored B cell properties to that of controls without an additional beneficial effect. In contrast, the 1:1 insulin-CD22L direct conjugate significantly reduced anti-insulin B cell proliferation in the presence of anti-CD40. CD22L alone had no effect, and the constructs did not affect the WT B cells. Thus, multivalent antigen constructs tend to activate anti-insulin B cells, while monomeric antigen-CD22L conjugates reduce B cell activation in response to simulated T cell help and reduce pathogenic B cell numbers without harming normal cells. Therefore, monomeric antigen-CD22L conjugates warrant futher study and may be promising candidates for preclinical trials to prevent T1D without inducing immunodeficiency.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin , Mice , Animals , Humans , Diabetes Mellitus, Type 1/drug therapy , B-Lymphocytes , Lymphocyte Activation , T-Lymphocytes , Mice, Transgenic , Antigens
3.
Mol Pharm ; 20(8): 3741-3756, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37410969

ABSTRACT

Autoimmune diseases are characterized by aberrant immune responses toward self-antigens. Current treatments lack specificity, promoting adverse effects by broadly suppressing the immune system. Therapies that specifically target the immune cells responsible for disease are a compelling strategy to mitigate adverse effects. Multivalent formats that display numerous binding epitopes off a single scaffold may enable selective immunomodulation by eliciting signals through pathways unique to the targeted immune cells. However, the architecture of multivalent immunotherapies can vary widely, and there is limited clinical data with which to evaluate their efficacy. Here, we set forth to review the architectural properties and functional mechanisms afforded by multivalent ligands and evaluate four multivalent scaffolds that address autoimmunity by altering B cell signaling pathways. First, we address both synthetic and natural polymer backbones functionalized with a variety of small molecule, peptide, and protein ligands for probing the effects of valency and costimulation. Then, we review nanoparticles composed entirely from immune signals which have been shown to be efficacious. Lastly, we outline multivalent liposomal nanoparticles capable of displaying high numbers of protein antigens. Taken together, these examples highlight the versatility and desirability of multivalent ligands for immunomodulation and illuminate strengths and weaknesses of multivalent scaffolds for treating autoimmunity.


Subject(s)
Autoimmune Diseases , B-Lymphocytes , Humans , Ligands , Immune Tolerance , Autoantigens , Immunotherapy
4.
Environ Res ; 236(Pt 1): 116746, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37517502

ABSTRACT

The analysis of porewater concentrations in constructed wetland sediments could help to understand biogeochemical processes, the sources and sinks of nutrients, and their effect on overlying water quality. In this study, we measured high-resolution porewater concentration profiles of ammonium (NH4+-N), nitrate (NO3N), phosphate (PO43--P), and ferrous iron (Fe(II)) in-situ in the Laratinga constructed wetland in Mount Barker (South Australia) using diffusive equilibration in thin films (DET) techniques. Measurements were taken under light and dark conditions, and non-aerated and aerated conditions to determine the effect on sediment porewater nutrient concentrations. Baseline surface water nutrient concentrations (NH4+-N > 36 mg L-1, PO43--P > 0.43 mg L-1) greatly exceeded water quality guideline criteria. Aeration of the water column alleviated night-time hypoxic conditions (i.e. dissolved oxygen increased from a minimum of 0.7 mg L-1 to a minimum of 4 mg L-1), and increased the redox potential in the sediment. Significant differences were present for NH4+-N, PO43--P, and Fe(II) concentrations with depth in the sediment. Ammonium concentrations in the sediment reduced under aerated conditions, presumably due to enhanced nitrification. However it was observed that PO43--P and Fe(II) concentrations increased significantly with aeration, especially under dark conditions, and were strongly correlated (R2>0.8). This was not what was hypothesised and points to complex interactions between Fe and P in the sediment. Nitrate concentrations in the sediment were below the detection limit (<0.9 mg L-1) which suggests limited nitrification-denitrification is occurring. Overall the results suggest that DET techniques are useful tools for quantifying porewater concentrations of nutrients in constructed wetlands under various environmental conditions.

5.
J Environ Manage ; 326(Pt A): 116625, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36356541

ABSTRACT

High organic loadings to constructed wetlands can result in water quality issues such as low dissolved oxygen and high ammonium concentrations, with artificial aeration a potential mitigation option. This study compared baseline (no aeration - NA), continuous aeration (CA), and intermittent aeration (IA) conditions to improve water quality in a tertiary treatment free water surface constructed wetland (FWS CW) with night time hypoxia/anoxia, and high nutrient concentrations. The response variables included dissolved oxygen (DO), total nitrogen (TN), ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), total phosphorus (TP), phosphate (PO43--P), and dissolved organic carbon (DOC). In situ aeration and monitoring was performed from April to June 2021 in a large, field-scale FWS CW, the Laratinga wetlands Mount Barker, South Australia. The results demonstrated that DO increased by an average 2.11 mg L-1 from NA to CA during the night and 1.26 mg L-1 and 1.84 mg L-1 from NA to IA during the night and day respectively when averaging over the basins. The C/N ratio was very low and there was no significant influence of DO on DOC concentrations. There was no significant difference in TN concentrations with the application of aeration aside from a decrease in the channel at night from NA to IA, and an increase in NH4+-N resulted under IA compared with NA in Basin 1 and 2 during the day. This implies that the N loadings exceeded the wetland's ability to complete nutrient conversions at a rate that aligns with input rate. The concentrations of NO3--N increased at night under CA and IA treatments suggesting that some nitrification was promoted, or there was inhibition of dissimilatory nitrate reduction to ammonium. The concentrations of TP and PO43--P significantly increased with the aeration compared with no aeration, however there was no difference between the aeration treatments. This suggested that increased sediment resuspension during aeration increased P in the water. There was no change in DOC with the application of aeration. Overall, the DO increased with aeration application and may be able to better support the wetland ecology; however, the Laratinga wetland is overloaded and the capacity of the wetland to effectively transform and remove nutrients is inhibited, even with the application of artificial aeration.


Subject(s)
Ammonium Compounds , Wetlands , Humans , Nitrogen , Nitrates , Phosphorus , Oxygen , Hypoxia , Waste Disposal, Fluid/methods
6.
PLoS One ; 17(11): e0276255, 2022.
Article in English | MEDLINE | ID: mdl-36383615

ABSTRACT

E26 transformation specific (ETS) family transcription factors are expressed during embryogenesis and are involved in various cellular processes such as proliferation, migration, differentiation, angiogenesis, apoptosis, and survival of cellular lineages to ensure appropriate development. Dysregulated expression of many of the ETS family members is detected in different cancers. The human ELF3, a member of the ETS family of transcription factors, plays a role in the induction and progression of human cancers is well studied. However, little is known about the role of ELF3 in early development. Here, the zebrafish elf3 was cloned, and its expression was analyzed during zebrafish development. Zebrafish elf3 is maternally deposited. At different developmental stages, elf3 expression was detected in different tissue, mainly neural tissues, endoderm-derived tissues, cartilage, heart, pronephric duct, blood vessels, and notochord. The expression levels were high at the tissue boundaries. Elf3 loss-of-function consequences were examined by using translation blocking antisense morpholino oligonucleotides, and effects were validated using CRISPR/Cas9 knockdown. Elf3-knockdown produced short and bent larvae with notochord, craniofacial cartilage, and fin defects. The extracellular matrix (ECM) in the fin and notochord was disorganized. Neural defects were also observed. Optic nerve fasciculation (bundling) and arborization in the optic tectum were defective in Elf3-morphants, and fragmentation of spinal motor neurons were evident. Dysregulation of genes encoding ECM proteins and matrix metalloprotease (MMP) and disorganization of ECM may play a role in the observed defects in Elf3 morphants. We conclude that zebrafish Elf3 is required for epidermal, mesenchymal, and neural tissue development.


Subject(s)
Extracellular Matrix , Morphogenesis , Zebrafish Proteins , Zebrafish , Animals , Humans , DNA-Binding Proteins/genetics , Extracellular Matrix/metabolism , Gene Expression Regulation, Developmental , Morphogenesis/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Transcription Factors/metabolism , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
7.
BMC Ecol Evol ; 22(1): 135, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36397002

ABSTRACT

BACKGROUND: Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. RESULTS: We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. CONCLUSIONS: Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.


Subject(s)
Ecosystem , Soil , Biodiversity , Soil Microbiology , Biota
8.
ACS Pharmacol Transl Sci ; 5(11): 1062-1069, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36407961

ABSTRACT

Kifunensine is a known inhibitor of type I α-mannosidase enzymes and has been shown to have therapeutic potential for a variety of diseases and application in the expression of high-mannose N-glycan bearing glycoproteins; however, the compound's hydrophilic nature limits its efficacy. We previously synthesized two hydrophobic acylated derivatives of kifunensine, namely, JDW-II-004 and JDW-II-010, and found that these compounds were over 75-fold more potent than kifunensine. Here we explored the effects of these compounds on different mice and human B cells, and we demonstrate that they affected the cells in a similar fashion to kifunensine, further demonstrating their functional equivalence to kifunensine in assays utilizing primary cells. Specifically, a dose-dependent increase in the formation of high-mannose N-glycans decorated glycoproteins were observed upon treatment with kifunensine, JDW-II-004, and JDW-II-010, but greater potency was observed with the acylated derivatives. Treatment with kifunensine or the acylated derivatives also resulted in impaired B-cell receptor (BCR) signaling of the primary mouse B cells; however, primary human B cells treated with kifunensine or JDW-II-004 did not affect BCR signaling, while a modest increase in BCR signaling was observed upon treatment with JDW-010. Nevertheless, these findings demonstrate that the hydrophobic acylated derivatives of kifunensine can help overcome the mass-transfer limitations of the parent compound, and they may have applications for the treatment of ERAD-related diseases or prove to be more cost-effective alternatives for the generation and production of high-mannose N-glycan bearing glycoproteins.

9.
Sensors (Basel) ; 22(15)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35957475

ABSTRACT

Application of bio-based fertilizers is considered a practical solution to enhance soil fertility and maintain soil quality. However, the composition of bio-based fertilizers needs to be quantified before their application to the soil. Non-destructive techniques such as near-infrared (NIR) and mid-infrared (MIR) are generally used to quantify the composition of bio-based fertilizers in a speedy and cost-effective manner. However, the prediction performances of these techniques need to be quantified before deployment. With this motive, this study investigates the potential of these techniques to characterize a diverse set of bio-based fertilizers for 25 different properties including nutrients, minerals, heavy metals, pH, and EC. A partial least square model with wavelength selection is employed to estimate each property of interest. Then a model averaging, approach is tested to examine if combining model outcomes of NIR with MIR could improve the prediction performances of these sensors. In total, 17 of the 25 elements could be predicted to have a good performance status using individual spectral methods. Combining model outcomes of NIR with MIR resulted in an improvement, increasing the number of properties that could be predicted from 17 to 21. Most notably the improvement in prediction performance was observed for Cd, Cr, Zn, Al, Ca, Fe, S, Cu, Ec, and Na. It was concluded that the combined use of NIR and MIR spectral methods can be used to monitor the composition of a diverse set of bio-based fertilizers.


Subject(s)
Fertilizers , Metals, Heavy , Fertilizers/analysis , Least-Squares Analysis , Soil/chemistry , Spectroscopy, Near-Infrared/methods
10.
New Phytol ; 236(2): 684-697, 2022 10.
Article in English | MEDLINE | ID: mdl-35779014

ABSTRACT

Mycorrhizal fungi associated with boreal trees and ericaceous shrubs are central actors in organic matter (OM) accumulation through their belowground carbon allocation, their potential capacity to mine organic matter for nitrogen (N) and their ability to suppress saprotrophs. Yet, interactions between co-occurring ectomycorrhizal fungi (EMF), ericoid mycorrhizal fungi (ERI), and saprotrophs are poorly understood. We used a long-term (19 yr) plant functional group manipulation experiment with removals of tree roots, ericaceous shrubs and mosses and analysed the responses of different fungal guilds (assessed by metabarcoding) and their interactions in relation to OM quality (assessed by mid-infrared spectroscopy and nuclear magnetic resonance) and decomposition (litter mesh-bags) across a 5000-yr post-fire boreal forest chronosequence. We found that the removal of ericaceous shrubs and associated ERI changed the composition of EMF communities, with larger effects occurring at earlier stages of the chronosequence. Removal of shrubs was associated with enhanced N availability, litter decomposition and enrichment of the recalcitrant OM fraction. We conclude that increasing abundance of slow-growing ericaceous shrubs and the associated fungi contributes to increasing nutrient limitation, impaired decomposition and progressive OM accumulation in boreal forests, particularly towards later successional stages. These results are indicative of the contrasting roles of EMF and ERI in regulating belowground OM storage.


Subject(s)
Mycobiome , Mycorrhizae , Carbon , Forests , Fungi , Mycorrhizae/physiology , Nitrogen , Soil , Soil Microbiology , Taiga , Trees/microbiology
11.
Ecol Evol ; 12(7): e9058, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35813918

ABSTRACT

Ecological restoration of former agricultural land can improve soil conditions, recover native vegetation, and provide fauna habitat. However, restoration benefits are often associated with time lags, as many attributes, such as leaf litter and coarse woody debris, need time to accumulate. Here, we experimentally tested whether adding mulch and logs to restoration sites in semi-arid Western Australia can accelerate restoration benefits. All sites had been cropped and then planted with native trees and shrubs (i.e., Eucalyptus, Melaleuca, and Acacia spp.) 10 years prior to our experiment, to re-establish the original temperate eucalypt woodland vegetation community. We used a Multi-site Before-After-Control-Impact (MBACI) design to test the effects on 30 abiotic and biotic response variables over a period of 2 years. Of the 30 response variables, a significant effect was found for just four variables: volumetric water content, decomposition, native herbaceous species cover and species richness of disturbance specialist ants. Mulch addition had a positive effect on soil moisture when compared to controls but suppressed growth of native (but not exotic) herbaceous plants. On plots with log additions, decomposition rates decreased, and species richness of disturbance specialist ants increased. However, we found no effect on total species richness and abundance of other ant species groups. The benefit of mulch to soil moisture was offset by its disbenefit to native herbs in our study. Given time, logs may also provide habitat for ant species that prefer concealed habitats. Indeed, benefits to other soil biophysical properties, vegetation, and ant fauna may require longer time frames to be detected. Further research is needed to determine whether the type, quantity, and context of mulch and log additions may improve their utility for old field restoration and whether effects on native herbs are correlated with idiosyncratic climatic conditions.

12.
Chembiochem ; 23(19): e202200266, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35816406

ABSTRACT

Cancer-associated alterations to glycosylation have been shown to aid cancer development and progression. An increased abundance of high mannose N-glycans has been observed in several cancers. Here, we describe the preparation of lectin drug conjugates (LDCs) that permit toxin delivery to cancer cells presenting high mannose N-glycans. Additionally, we demonstrate that cancer cells presenting low levels of high mannose N-glycans can be rendered sensitive to the LDCs by co-treatment with a type I mannosidase inhibitor. Our findings establish that an increased abundance of high mannose N-glycans in the glycocalyx of cancer cells can be leveraged to enable toxin delivery.


Subject(s)
Lectins , Mannose , Mannosidases , Pharmaceutical Preparations , Polysaccharides
13.
ACS Chem Biol ; 17(6): 1505-1512, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35648806

ABSTRACT

The abundance of sialic acid-containing glycans in the glycocalyx of malignant cells enables immune evasion. Here, we leverage the biosynthetic pathways that permit pervasive sialylation to incorporate a chimeric antigen receptor (CAR) ligand into malignant cell glycans, and demonstrate that this increases the susceptibility of malignant cells to the cytolytic activity of CAR-expressing natural killer (NK) cells. Specifically, we applied a C-9-functionalized nonnatural sialic acid [i.e., fluorescein sialic acid (FL-SA)] to modify malignant cell glycans. We confirm the metabolic incorporation of FL-SA into plasma membrane-associated glycans. The preparation of anti-fluorescein CAR NK cells permitted studies demonstrating that treating malignant cells with FL-SA increased susceptibility to CAR NK cell-mediated cytolysis. Furthermore, we observed that the specificity of the anti-fluorescein CAR NK cells is enhanced for fluorescein-labeled cells, and an increased release of cytokines from the CAR NK cells upon incubation with FL-SA-treated cells. The results arising from this study demonstrate that CAR ligands can be metabolically incorporated into malignant cells, and we reason that such strategies could be leveraged to tackle the issue of antigen heterogeneity that limits the clinical efficacy of CAR T/NK cell therapies.


Subject(s)
Receptors, Chimeric Antigen , Cell Line, Tumor , Fluoresceins/metabolism , Killer Cells, Natural , Ligands , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism
14.
Environ Pollut ; 308: 119571, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35661807

ABSTRACT

Estuaries are one of the most valuable biomes on earth. Although humans are highly dependent on these ecosystems, anthropogenic activities have impacted estuaries worldwide, altering their ecological functions and ability to provide a variety of important ecosystem services. Many anthropogenic stressors combine to affect the soft sedimentary habitats that dominate estuarine ecosystems. Now, due to climate change, estuaries and other marine areas might be increasingly exposed to the emerging threat of megafires. Here, by sampling estuaries before and after a megafire, we describe impacts of wildfires on estuarine benthic habitats and justify why megafires are a new and concerning threat to coastal ecosystems. We (1) show that wildfires change the fundamental characteristics of estuarine benthic habitat, (2) identify the factors (burnt intensity and proximity to water's edge) that influence the consequences of fires on estuaries, and (3) identify relevant indicators of wildfire impact: metals, nutrients, and pyrogenic carbon. We then discuss how fires can impact estuaries globally, regardless of local variability and differences in catchment. In the first empirical assessment of the impact of wildfires on estuarine condition, our results highlight indicators that may assist waterway managers to empirically detect wildfire impacts in estuaries and identify catchment factors that should be included in fire risk assessments for estuaries. Overall, this study highlights the importance of considering fire threats in current and future estuarine and coastal management.


Subject(s)
Ecosystem , Wildfires , Climate Change , Estuaries
15.
J Environ Manage ; 311: 114858, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35287082

ABSTRACT

There is limited understanding of how constructed wetland (CW) water quality may change over time in response to increased wastewater nutrient and hydraulic loadings. We evaluated long-term water quality trends and drivers for a full-scale (8.19 ha) free water surface CW that was developed in 2001 for the treatment of increasing amounts of pre-treated domestic wastewater from the township of Mount Barker, South Australia. Water quality parameter concentrations and loads, hydraulic loadings rates, trend direction assessments (TDAs), and water quality parameter removal efficiencies were analysed over the study period. The wetland received an annual average loading rate of 947, 19644, 31039, 18140, 2985, and 807 kg year-1 for BOD5, TN, NH4-N, TKN-N, NOx-N, and TP respectively and removed on average 8%, 72%, 73%, 78%, 12% and -246% of these loadings respectively. The average influent concentrations for the study period were 2.6, 42.3, 40.6, 35.9, 9.0, and 1.9 mg L-1 for BOD5, TN, NH4-N, TKN-N, NOx-N, and TP respectively. Average concentration removal rates over the study period were 50%, 39%, 40%, 15%, -216% and -600.5% for TN, NH4-N, TKN-N, NOx-N, BOD5 and TP respectively, suggesting that nitrogen was only partly assimilated by the wetland and it was a source of organic material and phosphorus. Using seasonally and inflow rate adjusted data, TDAs predicted virtually certain increases in TN, NH4-N, and TKN-N influent concentrations over time, a decline in NOx-N, no trend in BOD5, and a possible decreasing trend in TP. The inflow explained variance accounted for approximately 50% of the variation in TN, NH4-N and TKN-N effluent concentrations. Annual removal efficiencies of N declined with increasing hydraulic loads, and hydraulic loading rates varied with management practices. Seasonal analysis showed that N removal was greater during summer and lower in winter. Due to local population growth and various management practices, hydraulic loading is variable and has often exceeded design targets. Our findings indicate the long-term performance of CWs need to be closely monitored, as water quality can deteriorate due to increased hydraulic loadings.

16.
Chem Rec ; 21(11): 3178-3193, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34010496

ABSTRACT

ß-glucans are polymers of glucose that have been isolated from a variety of organisms. Isolated ß-glucans have been used for medical purposes for centuries; however, efforts to define the biological activities of ß-glucans experimentally were initiated in the 1940's. The diversity of structure associated with isolated ß-glucans has impeded said investigations, and efforts to leverage the biological activity of ß-glucans for clinical applications. In recognition of the need for defined ß-glucans that retain the biological activity of isolated ß-glucans, considerable investment has been made to facilitate the synthesis of structurally defined ß-glucans. Here, we review the different approaches that have been applied to prepare ß-glucans. In addition, we summarize the approaches that have been utilized to conjugate ß-glucans to proteins.


Subject(s)
beta-Glucans , Polymers
17.
Angew Chem Int Ed Engl ; 60(22): 12313-12318, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33728787

ABSTRACT

An engineered cyanovirin-N homologue that exhibits specificity for high mannose N-glycans has been constructed to aid type I α 1,2-mannosidase inhibitor discovery and development. Engineering the lectins C-terminus permitted facile functionalization with fluorophores via a sortase and click strategy. The resulting lectin constructs exhibit specificity for cells presenting high mannose N-glycans. Importantly, these lectin constructs can also be applied to specifically assess changes in cell surface glycosylation induced by type I mannosidase inhibitors. Testing the utility of these lectin constructs led to the discovery of type I mannosidase inhibitors with nanomolar potency. Cumulatively, these findings reveal the specificity and utility of the functionalized cyanovirin-N homologue constructs, and highlight their potential in analytical contexts that require high mannose-specific lectins.


Subject(s)
Lectins/chemistry , Mannosidases/antagonists & inhibitors , Alkaloids/chemistry , Alkaloids/metabolism , Amino Acid Motifs , Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Cell Line , Cysteine Endopeptidases/chemistry , Drug Design , Fluorescent Dyes/chemistry , Glycosylation , Humans , Lectins/metabolism , Mannose/chemistry , Mannose/metabolism , Mannosidases/metabolism , Microscopy, Fluorescence
18.
J Virol ; 94(10)2020 05 04.
Article in English | MEDLINE | ID: mdl-32161177

ABSTRACT

During human immunodeficiency virus type 1 (HIV-1) entry into cells, the viral envelope glycoprotein (Env) trimer [(gp120/gp41)3] binds the receptors CD4 and CCR5 and fuses the viral and cell membranes. CD4 binding changes Env from a pretriggered (state-1) conformation to more open downstream conformations. BMS-378806 (here called BMS-806) blocks CD4-induced conformational changes in Env important for entry and is hypothesized to stabilize a state-1-like Env conformation, a key vaccine target. Here, we evaluated the effects of BMS-806 on the conformation of Env on the surface of cells and virus-like particles. BMS-806 strengthened the labile, noncovalent interaction of gp120 with the Env trimer, enhanced or maintained the binding of most broadly neutralizing antibodies, and decreased the binding of poorly neutralizing antibodies. Thus, in the presence of BMS-806, the cleaved Env on the surface of cells and virus-like particles exhibits an antigenic profile consistent with a state-1 conformation. We designed novel BMS-806 analogues that stabilized the Env conformation for several weeks after a single application. These long-acting BMS-806 analogues may facilitate enrichment of the metastable state-1 Env conformation for structural characterization and presentation to the immune system.IMPORTANCE The envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) mediates the entry of the virus into host cells and is also the target for antibodies. During virus entry, Env needs to change shape. Env flexibility also contributes to the ability of HIV-1 to evade the host immune response; many shapes of Env raise antibodies that cannot recognize the functional Env and therefore do not block virus infection. We found that an HIV-1 entry inhibitor, BMS-806, stabilizes the functional shape of Env. We developed new variants of BMS-806 that stabilize Env in its natural state for long periods of time. The availability of such long-acting stabilizers of Env shape will allow the natural Env conformation to be characterized and tested for efficacy as a vaccine.


Subject(s)
Glycoproteins/chemistry , Glycoproteins/drug effects , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/drug effects , HIV-1/immunology , Piperazines/pharmacology , Virus Internalization/drug effects , A549 Cells , Antibodies, Neutralizing/immunology , CD4 Antigens/drug effects , CD4 Antigens/metabolism , Glycoproteins/genetics , HEK293 Cells , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/metabolism , HIV-1/drug effects , HIV-1/genetics , Humans , Ligands , Models, Molecular , Protein Conformation
19.
Front Microbiol ; 10: 2143, 2019.
Article in English | MEDLINE | ID: mdl-31608023

ABSTRACT

Biocrusts are aggregated crusts that exist on the soil surface of arid environments. They are complex microbial communities comprised of cyanobacteria, lichens, mosses, algae and fungi. Recently, biocrusts have gained significant attention due to their ubiquitous distribution and likely important ecological roles, including soil stabilization, soil moisture retention, carbon (C) and nitrogen (N) fixation, as well as microbial engineers for semi-arid ecosystem restoration. Here, we collected three co-occurring types of biocrust (Cyanobacterial crust, Crustose lichen, and Foliose lichen) and their underlying soil from arid zones within Western Australia. Bacterial microbiome composition was determined through 16S rRNA gene amplicon sequencing to assess the extent of microbiome selection within the crusts versus underlying soil and biogeochemical measures performed to determine whether the crusts had significant impact upon the underlying soil for nutrient input. We determined that the bacterial communities of native biocrusts are distinct from those in their underlying soil, where dominant bacterial taxa differed according to crust morphologies. δ15N revealed that N-fixation appeared most evident in Foliose lichen crust (1.73 ± 1.04‰). Consequently, depending upon the crust type, biocrusts contained higher concentrations of organic C (2 to 50 times), total N (4 to 16 times) and available ammonium (2 to 4 times), though this enrichment did not extend to the soils underneath them. These findings demonstrate that biocrust communities are seemingly islands of biological activity in an arid landscape, uniquely different from their surrounding and underlying soil.

20.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31391272

ABSTRACT

Human immunodeficiency virus (HIV-1) entry into cells is mediated by the viral envelope glycoprotein (Env) trimer, which consists of three gp120 exterior glycoproteins and three gp41 transmembrane glycoproteins. When gp120 binds sequentially to the receptors CD4 and CCR5 on the target cell, the metastable Env trimer is triggered to undergo entry-related conformational changes. PF-68742 is a small molecule that inhibits the infection of a subset of HIV-1 strains by interfering with an Env function other than receptor binding. Determinants of HIV-1 resistance to PF-68742 map to the disulfide loop and fusion peptide of gp41. Of the four possible PF-68742 stereoisomers, only one, MF275, inhibited the infection of CD4-positive CCR5-positive cells by some HIV-1 strains. MF275 inhibition of these HIV-1 strains occurred after CD4 binding but before the formation of the gp41 six-helix bundle. Unexpectedly, MF275 activated the infection of CD4-negative CCR5-positive cells by several HIV-1 strains resistant to the inhibitory effects of the compound in CD4-positive target cells. In contrast to CD4 complementation by CD4-mimetic compounds, activation of CD4-independent infection by MF275 did not depend upon the availability of the gp120 Phe 43 cavity. Sensitivity to inhibitors indicates that MF275-activated virus entry requires formation/exposure of the gp41 heptad repeat (HR1) as well as CCR5 binding. MF275 apparently activates a virus entry pathway parallel to that triggered by CD4 and CD4-mimetic compounds. Strain-dependent divergence in Env conformational transitions allows different outcomes, inhibition or activation, in response to MF275. Understanding the mechanisms of MF275 activity should assist efforts to optimize its utility.IMPORTANCE Envelope glycoprotein (Env) spikes on the surface of human immunodeficiency virus (HIV-1) bind target cell receptors, triggering changes in the shape of Env. We studied a small molecule, MF275, that also induced shape changes in Env. The consequences of MF275 interaction with Env depended on the HIV-1 strain, with infection by some viruses inhibited and infection by other viruses enhanced. These studies reveal the strain-dependent diversity of HIV-1 Envs as they undergo shape changes in proceeding down the entry pathway. Appreciation of this diversity will assist attempts to develop broadly active inhibitors of HIV-1 entry.


Subject(s)
HIV Envelope Protein gp120/metabolism , HIV Envelope Protein gp41/metabolism , HIV Infections/drug therapy , HIV-1/classification , HIV-1/drug effects , Pyridones/pharmacology , Sulfonamides/pharmacology , Virus Internalization/drug effects , Antiviral Agents/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV Infections/metabolism , HIV Infections/virology , Humans , Protein Binding , Protein Conformation , Protein Multimerization , Pyridones/chemistry , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Stereoisomerism , Sulfonamides/chemistry , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...