Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4361, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778053

ABSTRACT

Oxygen plays a crucial role in human embryogenesis, homeostasis, and tissue regeneration. Emerging engineered regenerative solutions call for novel oxygen delivery systems. To become a reality, these systems must consider physiological processes, oxygen release mechanisms and the target application. In this review, we explore the biological relevance of oxygen at both a cellular and tissue level, and the importance of its controlled delivery via engineered biomaterials and devices. Recent advances and upcoming trends in the field are also discussed with a focus on tissue-engineered constructs that could meet metabolic demands to facilitate regeneration.


Subject(s)
Oxygen , Regeneration , Tissue Engineering , Humans , Oxygen/metabolism , Tissue Engineering/methods , Regeneration/physiology , Animals , Biocompatible Materials/chemistry
2.
Article in English | MEDLINE | ID: mdl-38613808

ABSTRACT

Glycosaminoglycans (GAGs) are ubiquitous components in the cartilage extracellular matrix (ECM). Ultrastructural arrangement of ECM and GAG-mediated interactions with collagen are known to govern the mechanics in articular cartilage, but these interactions are less clear in other cartilage types. Therefore, this article reviews the current literature on ultrastructure of articular, auricular, meniscal, and nasal septal cartilage, seeking insight into GAG-mediated interactions influencing mechanics. Ultrastructural features of these cartilages are discussed to highlight differences between them. GAG-mediated interactions are reviewed under two categories: interactions with chondrocytes and interactions with other fibrillar macromolecules of the ECM. Moreover, efforts to replicate GAG-mediated interactions to improve mechanical integrity of tissue-engineered cartilage constructs are discussed. In conclusion, studies exploring cartilage specific GAGs are poorly represented in the literature, and the ultrastructure of nasal septal and auricular cartilage is less studied compared with articular and meniscal cartilages. Understanding the contribution of GAGs in cartilage mechanics at the ultrastructural level and translating that knowledge to engineered cartilage will facilitate improvement of cartilage tissue engineering approaches.

3.
Biomater Sci ; 12(1): 134-150, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37933486

ABSTRACT

Synthetic polymers, such as poly(vinyl alcohol) (PVA), are popular biomaterials for the fabrication of hydrogels for tissue engineering and regenerative medicine (TERM) applications, as they provide excellent control over the physico-chemical properties of the hydrogel. However, their bioinert nature is known to limit cell-biomaterial interactions by hindering cell infiltration, blood vessel recruitment and potentially limiting their integration with the host tissue. Efforts in the field have therefore focused on increasing the biofunctionality of synthetic hydrogels, without limiting the advantages associated with their tailorability and controlled release capacity. The aim of this study was to investigate the suitability of pristine gelatin to enhance the biofunctionality of tyraminated PVA (PVA-Tyr) hydrogels, by promoting cell infiltration and host blood vessel recruitment for TERM applications. Pure PVA-Tyr hydrogels and PVA-Tyr hydrogels incorporated with vascular endothelial growth factor (VEGF), a well-known pro-angiogenic stimulus, were used for comparison. Incorporating increasing concentrations of VEGF (0.01-10 µg mL-1) or gelatin (0.01-5 wt%) did not influence the physical properties of PVA-Tyr hydrogels. However, their presence within the polymer network (>0.1 µg mL-1 VEGF and >0.1 wt% gelatin) promoted endothelial cell interactions with the hydrogels. The covalent binding of unmodified gelatin or VEGF to the PVA-Tyr network did not hamper their inherent bioactivity, as they both promoted angiogenesis in a chick chorioallantoic membrane (CAM) assay, performing comparably with the unbound VEGF control. When the PVA-Tyr hydrogels were implanted subcutaneously in mice, it was observed that cell infiltration into the hydrogels was possible in the absence of gelatin or VEGF at 1- or 3-weeks post-implantation, highlighting a clear difference between in vitro an in vivo cell-biomaterial interaction. Nevertheless, the presence of gelatin or VEGF was necessary to enhance blood vessel recruitment and infiltration, although no significant difference was observed between these two biological molecules. Overall, this study highlights the potential of gelatin as a standalone pro-angiogenic cue to enhance biofunctionality of synthetic hydrogels and provides promise for their use in a variety of TERM applications.


Subject(s)
Polyvinyl Alcohol , Vascular Endothelial Growth Factor A , Mice , Animals , Polyvinyl Alcohol/chemistry , Gelatin/chemistry , Tissue Engineering , Hydrogels/chemistry , Polymers/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Ethanol
4.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762403

ABSTRACT

This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.


Subject(s)
Heparan Sulfate Proteoglycans , Physiological Phenomena , Glycosaminoglycans , Glypicans , Syndecans
5.
Am J Physiol Cell Physiol ; 324(1): C142-C152, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36409173

ABSTRACT

Chondroitin sulfate (CS) is a ubiquitous glycosaminoglycan covalently attached to the core proteins of cell surface, extracellular, and intracellular proteoglycans. The multistep and highly regulated biosynthesis of chondroitin sulfate and its degradation products give rise to a diverse species of molecules with functional regulatory properties in biological systems. This review will elucidate and expand on the most recent advances in understanding the role of chondroitin sulfate and its associate proteoglycans, in arthritis and Duchenne muscular dystrophy (DMD), two different and discrete pathologies. Highlighting not only the biodiverse nature of this family of molecules but also the utilization of CS proteoglycans, CS, and its catabolic fragments as biomarkers and potential therapeutic targets for disease pathologies.


Subject(s)
Arthritis , Muscular Dystrophy, Duchenne , Humans , Proteoglycans/metabolism , Chondroitin Sulfates/metabolism , Muscular Dystrophy, Duchenne/metabolism , Chondroitin Sulfate Proteoglycans
6.
Front Cell Dev Biol ; 10: 856261, 2022.
Article in English | MEDLINE | ID: mdl-35433700

ABSTRACT

This review highlights the multifunctional properties of perlecan (HSPG2) and its potential roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose, lymphoreticular, bone and bone marrow stroma and in neural tissues. Perlecan has roles in angiogenesis, tissue development and extracellular matrix stabilization in mature weight bearing and tensional tissues. Perlecan contributes to mechanosensory properties in cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties. Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and α2ß1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these interactions. Perlecan domain V promotes reconstitution of the blood brain barrier damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the neuromuscular junction and is of functional significance in neuromuscular control. Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the biomechanical properties of the intervertebral disc, variable levels of chondroplasia and myotonia. A greater understanding of the functional working of the neuromuscular junction may be insightful in therapeutic approaches in the treatment of neuromuscular disorders. Tissue engineering of salivary glands has been undertaken using bioactive peptides (TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces differentiation of salivary gland cells into self-assembling acini-like structures that express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes chondroprogenitor stem cell maturation and development of pluripotent migratory stem cell lineages, which participate in diarthrodial joint formation, and early cartilage development. Recent studies have also shown that perlecan is prominently expressed during repair of adult human articular cartilage. Perlecan also has roles in endochondral ossification and bone development. Perlecan domain I hydrogels been used in tissue engineering to establish heparin binding growth factor gradients that promote cell migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also been used as an FGF-2 delivery system for tissue repair. With the availability of recombinant perlecan domains, the development of other tissue repair strategies should emerge in the near future. Perlecan co-localization with vascular elastin in the intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and pressure and has a similar role to perlecan in canalicular fluid, regulating bone development and remodeling. This complements perlecan's roles in growth plate cartilage and in endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological importance. A greater understanding of its diverse biological roles and functional repertoires during tissue development, growth and disease will yield valuable insights into how this impressive proteoglycan could be utilized successfully in repair biology.

7.
J Robot Surg ; 16(4): 749-763, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34480323

ABSTRACT

We conducted a comprehensive review of surgical simulation models used in robotic surgery education. We present an assessment of the validity and cost-effectiveness of virtual and augmented reality simulation, animal, cadaver and synthetic organ models. Face, content, construct, concurrent and predictive validity criteria were applied to each simulation model. There are six major commercial simulation machines available for robot-assisted surgery. The validity of virtual reality (VR) simulation curricula for psychomotor assessment and skill acquisition for the early phase of robotic surgery training has been demonstrated. The widespread adoption of VR simulation has been limited by the high cost of these machines. Live animal and cadavers have been the accepted standard for robotic surgical simulation since it began in the early 2000s. Our review found that there is a lack of evidence in the literature to support the use of animal and cadaver for robotic surgery training. The effectiveness of these models as a training tool is limited by logistical, ethical, financial and infection control issues. The latest evolution in synthetic organ model training for robotic surgery has been driven by new 3D-printing technology. Validated and cost-effective high-fidelity procedural models exist for robotic surgery training in urology. The development of synthetic models for the other specialties is not as mature. Expansion into multiple surgical disciplines and the widespread adoption of synthetic organ models for robotic simulation training will require the ability to engineer scalability for mass production. This would enable a transition in robotic surgical education where digital and synthetic organ models could be used in place of live animals and cadaver training to achieve robotic surgery competency.


Subject(s)
Robotic Surgical Procedures , Simulation Training , Animals , Cadaver , Clinical Competence , Computer Simulation , Computers , Humans , Robotic Surgical Procedures/methods
8.
Adv Healthc Mater ; 10(14): e2100388, 2021 07.
Article in English | MEDLINE | ID: mdl-33890424

ABSTRACT

Surface modification of biomaterials is a promising approach to control biofunctionality while retaining the bulk biomaterial properties. Perlecan is the major proteoglycan in the vascular basement membrane that supports low levels of platelet adhesion but not activation. Thus, perlecan is a promising bioactive for blood-contacting applications. This study furthers the mechanistic understanding of platelet interactions with perlecan by establishing that platelets utilize domains III and V of the core protein for adhesion. Polyvinyl chloride (PVC) is functionalized with recombinant human perlecan domain V (rDV) to explore the effect of the tethering method on proteoglycan orientation and bioactivity. Tethering of rDV to PVC is achieved via either physisorption or covalent attachment via plasma immersion ion implantation (PIII) treatment. Both methods of rDV tethering reduce platelet adhesion and activation compared to the pristine PVC, however, the mechanisms are unique for each tethering method. Physisorption of rDV on PVC orientates the molecule to hinder access to the integrin-binding region, which inhibits platelet adhesion. In contrast, PIII treatment orientates rDV to allow access to the integrin-binding region, which is rendered antiadhesive to platelets via the glycosaminoglycan (GAG) chain. These effects demonstrate the potential of rDV biofunctionalization to modulate platelet interactions for blood contacting applications.


Subject(s)
Heparan Sulfate Proteoglycans , Polyvinyl Chloride , Extracellular Matrix Proteins , Glycosaminoglycans , Humans
9.
Cartilage ; 13(2_suppl): 476S-485S, 2021 12.
Article in English | MEDLINE | ID: mdl-33749320

ABSTRACT

OBJECTIVE: To investigate GAG-ECM (glycosaminoglycan-extracellular matrix) interactions in different cartilage types. To achieve this, we first aimed to determine protocols for consistent calculation of GAG content between cartilage types. DESIGN: Auricular cartilage containing both collagen and elastin was used to determine the effect of lyophilization on GAG depletion activity. Bovine articular, auricular, meniscal, and nasal cartilage plugs were treated using different reagents to selectively remove GAGs. Sulfated glycosaminoglycan (sGAG) remaining in the sample after treatment were measured, and sGAG loss was compared between cartilage types. RESULTS: The results indicate that dry weight of cartilage should be measured prior to cartilage treatment in order to provide a more accurate reference for normalization. Articular, meniscal, and nasal cartilage lost significant amounts of sGAG for all reagents used. However, only hyaluronidase was able to remove significant amount of sGAG from auricular cartilage. Furthermore, hyaluronidase was able to remove over 99% of sGAG from all cartilage types except auricular cartilage where it only removed around 76% of sGAG. The results indicate GAG-specific ECM binding for different cartilage types and locations. CONCLUSIONS: In conclusion, lyophilization can be performed to determine native dry weight for normalization without affecting the degree of GAG treatment. To our knowledge, this is the first study to compare GAG-ECM interactions of different cartilage types using different GAG extraction methods. Degree of GAG depletion not only varied with cartilage type but also the same type from different anatomic locations. This suggests specific structure-function roles for GAG populations found in the tissues.


Subject(s)
Cartilage , Meniscus , Animals , Cartilage/metabolism , Cattle , Collagen/metabolism , Extracellular Matrix/metabolism , Meniscus/metabolism
10.
Biomacromolecules ; 22(4): 1590-1599, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33764748

ABSTRACT

A rapid photo-curing system based on poly(2-ethyl-2-oxazoline-co-2-allylamidopropyl-2-oxazoline) and its in vivo compatibility are presented. The base polymer was synthesized from the copolymerization of 2-ethyl-2-oxazoline (EtOx) and the methyl ester containing 2-methoxycarboxypropyl-2-oxazoline (C3MestOx) followed by amidation with allylamine to yield a highly water-soluble macromer. We showed that spherical hydrogels can be obtained by a simple water-in-oil gelation method using thiol-ene coupling and investigated the in vivo biocompatibility of these hydrogel spheres in a 28-day murine subdermal model. For comparison, hydrogel spheres prepared from poly(ethylene glycol) were also implanted. Both materials displayed mild, yet typical foreign body responses with little signs of fibrosis. This is the first report on the foreign body response of a poly(2-oxazoline) hydrogel, which paves the way for future investigations into how this highly tailorable class of materials can be used for implantable hydrogel devices.


Subject(s)
Hydrogels , Polyethylene Glycols , Animals , Kinetics , Mice , Polymerization , Polymers
11.
Cartilage ; 11(2): 234-250, 2020 04.
Article in English | MEDLINE | ID: mdl-31578084

ABSTRACT

OBJECTIVE: Examination of intervertebral disc (IVD) regeneration in an ovine annular lesion model. HYPOTHESIS: Sulfation motifs are important functional determinants in glycosaminoglycans (GAGs). Previous studies have correlated 3-B-3(-) and 7-D-4 chondroitin sulfate (CS) motifs in tissues undergoing morphogenetic transition in development. We hypothesize that these motifs may also be expressed in degenerate IVDs and may represent a reparative response. DESIGN: Induction of disc degeneration by 5 mm or 6 × 20 mm lesions in the annulus fibrosus (AF) over 6 or 3 to 6 months postoperation (PO). Tissue sections were stained with toluidine blue-fast green, 3-B-3(-) and 7-D-4 CS-sulfation motifs were immunolocalized in 3-month PO 6 × 20 mm lesion IVDs. Sulfated glycosaminoglycan (GAG), 3-B-3(-), and 7-D-4 epitopes were quantitated by ELISIA (enzyme-linked immunosorbent inhibition assay) in extracts of AF (lesion site and contralateral half) and nucleus pulposus (NP) 0, 3, and 6 months PO. RESULTS: Collagenous overgrowth of lesions occurred in the outer AF. Chondroid metaplasia in ~20% of the 6 × 20 mm affected discs resulted in integration of an outgrowth of NP tissue with the inner AF lamellae preventing propagation of the lesion. 3-B-3(-) and 7-D-4 CS sulfation motifs were immunolocalized in this chondroid tissue. ELISIA quantified CS sulfation motifs demonstrating an increase 3 to 6 months PO in the AF lesion and a reduction in sulfated GAG not evident in the contralateral AF. CONCLUSIONS: (1) Outer annular lesions underwent spontaneous repair. (2) Chondroid metaplasia of the inner 6 × 20 mm defect prevented its propagation suggesting an apparent reparative response.


Subject(s)
Chondroitin Sulfates/metabolism , Glycosaminoglycans/metabolism , Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc/physiopathology , Regeneration/physiology , Animals , Annulus Fibrosus/physiopathology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Epitopes , Sheep
12.
J Funct Biomater ; 10(3)2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31366056

ABSTRACT

Poly(d,l-lactide-co-glycolide) (PLGA) has been extensively explored for bone regeneration applications; however, its clinical use is limited by low osteointegration. Therefore, approaches that incorporate osteoconductive molecules are of great interest. Graphene oxide (GO) is gaining popularity for biomedical applications due to its ability to bind biological molecules and present them for enhanced bioactivity. This study reports the preparation of PLGA microparticles via Pickering emulsification using GO as the sole surfactant, which resulted in hybrid microparticles in the size range of 1.1 to 2.4 µm based on the ratio of GO to PLGA in the reaction. Furthermore, this study demonstrated that the hybrid GO-PLGA microparticles were not cytotoxic to either primary human fetal cartilage rudiment cells or the human osteoblast-like cell line, Saos-2. Additionally, the GO-PLGA microparticles promoted the osteogenic differentiation of the human fetal cartilage rudiment cells in the absence of exogenous growth factors to a greater extent than PLGA alone. These findings demonstrate that GO-PLGA microparticles are cytocompatible, osteoinductive and have potential as substrates for bone tissue engineering.

13.
J Biol Chem ; 294(30): 11458-11472, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31175155

ABSTRACT

Mast cells represent a heterogeneous cell population that is well-known for the production of heparin and the release of histamine upon activation. Serglycin is a proteoglycan that within mast cell α-granules is predominantly decorated with the glycosaminoglycans heparin or chondroitin sulfate (CS) and has a known role in granule homeostasis. Heparanase is a heparin-degrading enzyme, is present within the α-granules, and contributes to granule homeostasis, but an equivalent CS-degrading enzyme has not been reported previously. In this study, using several approaches, including epitope-specific antibodies, immunohistochemistry, and EM analyses, we demonstrate that human HMC-1 mast cells produce the CS-degrading enzymes hyaluronidase-1 (HYAL1) and HYAL4. We observed that treating the two model CS proteoglycans aggrecan and serglycin with HYAL1 and HYAL4 in vitro cleaves the CS chains into lower molecular weight forms with nonreducing end oligosaccharide structures similar to CS stub neoepitopes generated after digestion with the bacterial lyase chondroitinase ABC. We found that these structures are associated with both the CS linkage region and with structures more distal toward the nonreducing end of the CS chain. Furthermore, we noted that HYAL4 cleaves CS chains into lower molecular weight forms that range in length from tetra- to dodecasaccharides. These results provide first evidence that mast cells produce HYAL4 and that this enzyme may play a specific role in maintaining α-granule homeostasis in these cells by cleaving CS glycosaminoglycan chains attached to serglycin.


Subject(s)
Chondroitin Sulfates/metabolism , Hyaluronoglucosaminidase/biosynthesis , Mast Cells/enzymology , Proteoglycans/metabolism , Vesicular Transport Proteins/metabolism , Aggrecans/chemistry , Aggrecans/metabolism , Animals , Chondroitin Sulfates/chemistry , Humans , Molecular Weight , Proteoglycans/chemistry , Vesicular Transport Proteins/chemistry
14.
Burns Trauma ; 7: 2, 2019.
Article in English | MEDLINE | ID: mdl-30701184

ABSTRACT

There is a vast number of treatments on the market for the management of wounds and burns, representing a multi-billion dollar industry worldwide. These include conventional wound dressings, dressings that incorporate growth factors to stimulate and facilitate the wound healing process, and skin substitutes that incorporate patient-derived cells. This article will review the more established, and the recent advances in the use of biomaterials for wound healing therapies, and their future direction.

15.
Front Oncol ; 9: 1482, 2019.
Article in English | MEDLINE | ID: mdl-32010611

ABSTRACT

Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.

16.
Biochem J ; 475(3): 587-620, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29439148

ABSTRACT

Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.


Subject(s)
Biodiversity , Chondroitin Sulfates/chemistry , Glycosaminoglycans/chemistry , Morphogenesis/genetics , Chondroitin Sulfates/genetics , Glycosaminoglycans/genetics , Humans , Proteoglycans/chemistry , Proteoglycans/genetics , Signal Transduction/genetics
17.
J Histochem Cytochem ; 66(4): 321-336, 2018 04.
Article in English | MEDLINE | ID: mdl-29290153

ABSTRACT

Key events that occur during inflammation include the recruitment, adhesion, and transmigration of leukocytes from the circulation to the site of inflammation. These events are modulated by chemokines, integrins, and selectins and the interaction of these molecules with glycosaminoglycans, predominantly heparan sulfate (HS). The development of HS/heparin mimetics that interfere or inhibit the interactions that occur between glycosaminoglycans and modulators of inflammation holds great potential for use as anti-inflammatory therapeutics. This review will detail the role of HS in the events that occur during inflammation, their interaction and modulation of inflammatory mediators, and the current advances in the development of HS/heparin mimetics as anti-inflammatory biotherapeutics.


Subject(s)
Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/pharmacology , Drug Discovery , Heparitin Sulfate/immunology , Heparitin Sulfate/pharmacology , Immunity, Innate , Inflammation/immunology , Animals , Anti-Inflammatory Agents/chemistry , Biomimetics/methods , Chemokines/immunology , Drug Discovery/methods , Glucuronidase/antagonists & inhibitors , Glucuronidase/immunology , Heparitin Sulfate/chemistry , Humans , Immunity, Innate/drug effects , Inflammation/drug therapy
18.
Macromol Biosci ; 17(12)2017 12.
Article in English | MEDLINE | ID: mdl-29068543

ABSTRACT

Multicomponent gelatin-methacryloyl (GelMA) hydrogels are regularly adopted for cartilage tissue engineering (TE) applications, where optimizing chemical modifications for preserving biofunctionality is often overlooked. This study investigates the biological effect of two different modification methods, methacrylation and thiolation, to copolymerize GelMA and heparin. The native bioactivity of methacrylated heparin (HepMA) and thiolated heparin (HepSH) is evaluated via thromboplastin time and heparan sulfate-deficient myeloid cell-line proliferation assay, demonstrating that thiolation is superior for preserving anticoagulation and growth factor signaling capacity. Furthermore, incorporating either HepMA or HepSH in chondrocyte-laden GelMA hydrogels, cultured for 5 weeks under chondrogenic conditions, promotes cell viability and chondrocyte phenotype. However, only GelMA-HepSH hydrogels yield significantly greater differentiation and matrix deposition in vitro compared to GelMA. This study demonstrates that thiol-ene chemistry offers a favorable strategy for incorporating bioactives into gelatin hydrogels as compared to methacrylation while furthermore highlighting GelMA-HepSH hydrogels as candidates for cartilage TE applications.


Subject(s)
Chondrocytes/cytology , Chondrogenesis/drug effects , Heparin/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Cartilage, Articular/cytology , Cell Differentiation/drug effects , Cell Survival/drug effects , Chondrocytes/drug effects , Extracellular Matrix , Fibroblast Growth Factor 2/metabolism , Gelatin/chemistry , Gelatin/pharmacology , Heparin/chemistry , Heparin/metabolism , Humans , Methacrylates/chemistry , Partial Thromboplastin Time , Photochemistry/methods , Sulfhydryl Compounds/chemistry , Tissue Engineering/methods , Tissue Scaffolds
19.
J Control Release ; 250: 48-61, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28189628

ABSTRACT

The repair of dermal wounds, particularly in the diabetic population, poses a significant healthcare burden. The impaired wound healing of diabetic wounds is attributed to low levels of endogenous growth factors, including vascular endothelial growth factor (VEGF), that normally stimulate multiple phases of wound healing. In this study, chitosan scaffolds were prepared via freeze drying and loaded with plasmid DNA encoding perlecan domain I and VEGF189 and analyzed in vivo for their ability to promote dermal wound healing. The plasmid DNA encoding perlecan domain I and VEGF189 loaded scaffolds promoted dermal wound healing in normal and diabetic rats. This treatment resulted in an increase in the number of blood vessels and sub-epithelial connective tissue matrix components within the wound beds compared to wounds treated with chitosan scaffolds containing control DNA or wounded controls. These results suggest that chitosan scaffolds containing plasmid DNA encoding VEGF189 and perlecan domain I have the potential to induce angiogenesis and wound healing.


Subject(s)
Chitosan/chemistry , DNA/administration & dosage , Heparan Sulfate Proteoglycans/genetics , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/genetics , Wound Healing , Animals , DNA/chemistry , Diabetes Complications/physiopathology , Drug Delivery Systems , Drug Liberation , Heparan Sulfate Proteoglycans/metabolism , Humans , Male , Mechanical Phenomena , Plasmids , Rats, Inbred Lew , Skin/blood supply , Skin/injuries , Tissue Scaffolds , Transgenes , Vascular Endothelial Growth Factor A/metabolism
20.
J Biol Chem ; 292(10): 4054-4063, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28115521

ABSTRACT

Platelet factor 4 (PF4) is produced by platelets with roles in both inflammation and wound healing. PF4 is stored in platelet α-granules bound to the glycosaminoglycan (GAG) chains of serglycin. This study revealed that platelet serglycin is decorated with chondroitin/dermatan sulfate and that PF4 binds to these GAG chains. Additionally, PF4 had a higher affinity for endothelial-derived perlecan heparan sulfate chains than serglycin GAG chains. The binding of PF4 to perlecan was found to inhibit both FGF2 signaling and platelet activation. This study revealed additional insight into the ways in which PF4 interacts with components of the vasculature to modulate cellular events.


Subject(s)
Blood Platelets/metabolism , Chondroitin Sulfates/metabolism , Dermatan Sulfate/metabolism , Fibroblast Growth Factor 2/metabolism , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Platelet Factor 4/metabolism , Proteoglycans/metabolism , Vesicular Transport Proteins/metabolism , Blotting, Western , Humans , Platelet Activation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...