Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38260387

ABSTRACT

A healthy bladder requires the homeostatic maintenance of and rapid regeneration of urothelium upon stress/injury/infection. Several factors have been identified to play important roles in urothelial development, injury and disease response, however, little is known about urothelial regulation at homeostasis. Here, we identify a new role for IFRD1, a stress-induced gene that has recently been demonstrated to play a critical role in adult tissue proliferation and regeneration, in maintenance of urothelial function/ homeostasis in a mouse model. We show that the mouse bladder expresses IFRD1 at homeostasis and its loss alters the global transcriptome of the bladder with significant accumulation of cellular organelles including multivesicular bodies with undigested cargo, lysosomes and mitochondria. We demonstrate that IFRD1 interacts with several mRNA-translation-regulating factors in human urothelial cells and that the urothelium of Ifrd1-/- mice reveal decreased global translation and enhanced endoplasmic reticulum (ER) stress response. Ifrd1-/- bladders have activation of the unfolded protein response (UPR) pathway, specifically the PERK arm, with a concomitant increase in oxidative stress and spontaneous exfoliation of urothelial cells. Further, we show that such increase in cell shedding is associated with a compensatory proliferation of the basal cells but impaired regeneration of superficial cells. Finally, we show that upon loss of IFRD1, mice display aberrant voiding behavior. Thus, we propose that IFRD1 is at the center of many crucial cellular pathways that work together to maintain urothelial homeostasis, highlighting its importance as a target for diagnosis and/or therapy in bladder conditions.

2.
Dev Cell ; 59(1): 33-47.e5, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38101412

ABSTRACT

Aging is a risk factor for disease via increased susceptibility to infection, decreased ability to maintain homeostasis, inefficiency in combating stress, and decreased regenerative capacity. Multiple diseases, including urinary tract infection (UTI), are more prevalent with age; however, the mechanisms underlying the impact of aging on the urinary tract mucosa and the correlation between aging and disease remain poorly understood. Here, we show that, relative to young (8-12 weeks) mice, the urothelium of aged (18-24 months) female mice accumulates large lysosomes with reduced acid phosphatase activity and decreased overall autophagic flux in the aged urothelium, indicative of compromised cellular homeostasis. Aged bladders also exhibit basal accumulation of reactive oxygen species (ROS) and a dampened redox response, implying heightened oxidative stress. Furthermore, we identify a canonical senescence-associated secretory phenotype (SASP) in the aged urothelium, along with continuous NLRP3-inflammasome- and Gasdermin-D-dependent pyroptotic cell death. Consequently, aged mice chronically exfoliate urothelial cells, further exacerbating age-related urothelial dysfunction. Upon infection with uropathogenic E. coli, aged mice harbor increased bacterial reservoirs and are more prone to spontaneous recurrent UTI. Finally, we discover that treatment with D-mannose, a natural bioactive monosaccharide, rescues autophagy flux, reverses the SASP, and mitigates ROS and NLRP3/Gasdermin/interleukin (IL)-1ß-driven pyroptotic epithelial cell shedding in aged mice. Collectively, our results demonstrate that normal aging affects bladder physiology, with aging alone increasing baseline cellular stress and susceptibility to infection, and suggest that mannose supplementation could serve as a senotherapeutic to counter age-associated urothelial dysfunction.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Urinary Tract Infections , Mice , Female , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Urinary Bladder/metabolism , Urinary Bladder/microbiology , Urinary Bladder/pathology , Mannose/metabolism , Reactive Oxygen Species/metabolism , Escherichia coli/metabolism , Urothelium/metabolism , Urothelium/microbiology , Interleukin-1beta , Gasdermins , Urinary Tract Infections/metabolism , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Cellular Senescence
3.
J Vis Exp ; (199)2023 09 15.
Article in English | MEDLINE | ID: mdl-37782106

ABSTRACT

Ovarian cancer is a fatal gynecologic cancer and the fifth leading cause of cancer death among women in the United States. Developing new drug treatments is crucial to advancing healthcare and improving patient outcomes. Organoids are in-vitro three-dimensional multicellular miniature organs. Patient-derived organoid (PDO) models of ovarian cancer may be optimal for drug screening because they more accurately recapitulate tissues of interest than two-dimensional cell culture models and are inexpensive compared to patient-derived xenografts. In addition, ovarian cancer PDOs mimic the variable tumor microenvironment and genetic background typically observed in ovarian cancer. Here, a method is described that can be used to test conventional and novel drugs on PDOs derived from ovarian cancer tissue and ascites. A luminescence-based adenosine triphosphate (ATP) assay is used to measure viability, growth rate, and drug sensitivity. Drug screens in PDOs can be completed in 7-10 days, depending on the rate of organoid formation and drug treatments.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Organoids/pathology , Tumor Microenvironment
4.
Clin Cancer Res ; 29(13): 2466-2479, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37097615

ABSTRACT

PURPOSE: To determine the ability of RAD51 foci to predict platinum chemotherapy response in high-grade serous ovarian cancer (HGSOC) patient-derived samples. EXPERIMENTAL DESIGN: RAD51 and γH2AX nuclear foci were evaluated by immunofluorescence in HGSOC patient-derived cell lines (n = 5), organoids (n = 11), and formalin-fixed, paraffin-embedded tumor samples (discovery n = 31, validation n = 148). Samples were defined as RAD51-High if >10% of geminin-positive cells had ≥5 RAD51 foci. Associations between RAD51 scores, platinum chemotherapy response, and survival were evaluated. RESULTS: RAD51 scores correlated with in vitro response to platinum chemotherapy in established and primary ovarian cancer cell lines (Pearson r = 0.96, P = 0.01). Organoids from platinum-nonresponsive tumors had significantly higher RAD51 scores than those from platinum-responsive tumors (P < 0.001). In a discovery cohort, RAD51-Low tumors were more likely to have a pathologic complete response (RR, 5.28; P < 0.001) and to be platinum-sensitive (RR, ∞; P = 0.05). The RAD51 score was predictive of chemotherapy response score [AUC, 0.90; 95% confidence interval (CI), 0.78-1.0; P < 0.001). A novel automatic quantification system accurately reflected the manual assay (92%). In a validation cohort, RAD51-Low tumors were more likely to be platinum-sensitive (RR, ∞; P < 0.001) than RAD51-High tumors. Moreover, RAD51-Low status predicted platinum sensitivity with 100% positive predictive value and was associated with better progression-free (HR, 0.53; 95% CI, 0.33-0.85; P < 0.001) and overall survival (HR, 0.43; 95% CI, 0.25-0.75; P = 0.003) than RAD51-High status. CONCLUSIONS: RAD51 foci are a robust marker of platinum chemotherapy response and survival in ovarian cancer. The utility of RAD51 foci as a predictive biomarker for HGSOC should be tested in clinical trials.


Subject(s)
Ovarian Neoplasms , Platinum , Humans , Female , Platinum/therapeutic use , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Biomarkers, Tumor/therapeutic use
5.
J Vis Exp ; (192)2023 02 24.
Article in English | MEDLINE | ID: mdl-36912550

ABSTRACT

Immunofluorescence is one of the most widely used techniques to visualize target antigens with high sensitivity and specificity, allowing for the accurate identification and localization of proteins, glycans, and small molecules. While this technique is well-established in two-dimensional (2D) cell culture, less is known about its use in three-dimensional (3D) cell models. Ovarian cancer organoids are 3D tumor models that recapitulate tumor cell clonal heterogeneity, the tumor microenvironment, and cell-cell and cell-matrix interactions. Thus, they are superior to cell lines for the evaluation of drug sensitivity and functional biomarkers. Therefore, the ability to utilize immunofluorescence on primary ovarian cancer organoids is extremely beneficial in understanding the biology of this cancer. The current study describes the technique of immunofluorescence to detect DNA damage repair proteins in high-grade serous patient-derived ovarian cancer organoids (PDOs). After exposing the PDOs to ionizing radiation, immunofluorescence is performed on intact organoids to evaluate nuclear proteins as foci. Images are collected using z-stack imaging on confocal microscopy and analyzed using automated foci counting software. The described methods allow for the analysis of temporal and special recruitment of DNA damage repair proteins and colocalization of these proteins with cell-cycle markers.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Cell Line , Cystadenocarcinoma, Serous/pathology , DNA Damage , Organoids/metabolism , Tumor Microenvironment
6.
J Vis Exp ; (191)2023 01 06.
Article in English | MEDLINE | ID: mdl-36688549

ABSTRACT

Organoids are 3D dynamic tumor models that can be grown successfully from patient-derived ovarian tumor tissue, ascites, or pleural fluid and aid in the discovery of novel therapeutics and predictive biomarkers for ovarian cancer. These models recapitulate clonal heterogeneity, the tumor microenvironment, and cell-cell and cell-matrix interactions. Additionally, they have been shown to match the primary tumor morphologically, cytologically, immunohistochemically, and genetically. Thus, organoids facilitate research on tumor cells and the tumor microenvironment and are superior to cell lines. The present protocol describes distinct methods to generate patient-derived ovarian cancer organoids from patient tumors, ascites, and pleural fluid samples with a higher than 97% success rate. The patient samples are separated into cellular suspensions by both mechanical and enzymatic digestion. The cells are then plated utilizing a basement membrane extract (BME) and are supported with optimized growth media containing supplements specific to the culturing of high-grade serous ovarian cancer (HGSOC). After forming initial organoids, the PDOs can sustain long-term culture, including passaging for expansion for subsequent experiments.


Subject(s)
Cystadenocarcinoma, Serous , Ovarian Neoplasms , Humans , Female , Ascites/pathology , Ovarian Neoplasms/pathology , Cystadenocarcinoma, Serous/pathology , Carcinoma, Ovarian Epithelial/pathology , Organoids/pathology , Tumor Microenvironment
7.
Urogynecology (Phila) ; 29(4): 430-442, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36384972

ABSTRACT

IMPORTANCE: Bladder diseases characterized by chronic inflammation are highly prevalent in older women, as are recurrent urinary tract infections (rUTIs). Recurrent urinary tract infections lead to chronic inflammation of the bladder mucosa and cause lower urinary tract symptoms that persist even after the infection is cleared. Vaginal estrogen therapy (VET) has long been used for the treatment of rUTIs; however, its mechanism of action remains unclear. OBJECTIVES: The objective of this study was to examine the mechanism(s) by which VET affects bladder inflammation and response to rUTIs. STUDY DESIGN: Here, we induced surgical menopause in aged (18 months old) mice followed by VET. Mice were then infected with uropathogenic Escherichia coli , and course of infection was investigated. Inflammatory cytokine response was assessed before and during infection using enzyme-linked immunosorbent assay. RNA sequencing analysis was used to compare the inflammatory status of the young versus aged bladder and principal changes confirmed via quantitative reverse transcriptase-polymerase chain reaction to determine the effects of VET on bladder inflammation. Impact on age-associated bladder tertiary lymphoid tissue formation was evaluated histologically. RESULTS: In the ovariectomized aged model, VET not only mitigated uterine atrophy but was also associated with reduced rUTIs, number of bacterial reservoirs, dampened immune response, and promotion of terminal differentiation of urothelial cells. Bladder tertiary lymphoid tissue lesions were also reduced with VET, with an associated decrease in signals important for bladder tertiary lymphoid tissue formation. Finally, we determined that VET reverses age-associated upregulation of inflammatory genes and pathways. CONCLUSIONS: Our data suggest that VET is effective by reducing age-associated hyperinflammatory conditions in bladder mucosa and in enhancing the host response to infection.


Subject(s)
Cystitis , Escherichia coli Infections , Urinary Tract Infections , Female , Animals , Mice , Urinary Bladder/metabolism , Escherichia coli Infections/drug therapy , Urinary Tract Infections/drug therapy , Estrogens/pharmacology , Inflammation/drug therapy , Cystitis/drug therapy
8.
Dev Biol ; 493: 29-39, 2023 01.
Article in English | MEDLINE | ID: mdl-36368522

ABSTRACT

A global increase in older individuals creates an increasing demand to understand numerous healthcare challenges related to aging. This population is subject to changes in tissue physiology and the immune response network. Older individuals are particularly susceptible to infectious diseases, with one of the most common being urinary tract infections (UTIs). Postmenopausal and older women have the highest risk of recurrent UTIs (rUTIs); however, why rUTIs become more frequent after menopause and during old age is incompletely understood. This increased susceptibility and severity among older individuals may involve functional changes to the immune system with age. Aging also has substantial effects on the epithelium and the immune system that led to impaired protection against pathogens, yet heightened and prolonged inflammation. How the immune system and its responses to infection changes within the bladder mucosa during aging has largely remained poorly understood. In this review, we highlight our understanding of bladder innate and adaptive immunity and the impact of aging and hormones and hormone therapy on bladder epithelial homeostasis and immunity. In particular, we elaborate on how the cellular and molecular immune landscape within the bladder can be altered during aging as aged mice develop bladder tertiary lymphoid tissues (bTLT), which are absent in young mice leading to profound age-associated change to the immune landscape in bladders that might drive the significant increase in UTI susceptibility. Knowledge of host factors that prevent or promote infection can lead to targeted treatment and prevention regimens. This review also identifies unique host factors to consider in the older, female host for improving rUTI treatment and prevention by dissecting the age-associated alteration of the bladder mucosal immune system.


Subject(s)
Urinary Tract Infections , Urinary Tract , Female , Mice , Animals , Urinary Bladder , Aging , Homeostasis , Immunity, Innate
9.
Autophagy ; 15(3): 527-542, 2019 03.
Article in English | MEDLINE | ID: mdl-30335568

ABSTRACT

50% of Caucasians carry a Thr300Ala variant (T300A) in the protein encoded by the macroautophagy/autophagy gene ATG16L1. Here, we show that the T300A variant confers protection against urinary tract infections (UTIs), the most common infectious disease in women. Using knockin mice carrying the human T300A variant, we show that the variant limits the UTI-causing bacteria, uropathogenic Escherichia coli (UPEC), from establishing persistent intracellular reservoirs, which can seed UTI recurrence. This phenotype is recapitulated in mice lacking Atg16l1 or Atg7 exclusively in the urothelium. We further show that mice with the T300A variant exhibit urothelial cellular abnormalities, including vesicular congestion and aberrant accumulation of UPK (uroplakin) proteins. Importantly, presence of the T300A variant in humans is associated with similar urothelial architectural abnormalities, indicating an evolutionarily conserved impact. Mechanistically, we show that the reduced bacterial persistence is independent of basal autophagic flux or proinflammatory cytokine responses and does not involve Atg14 or Epg5. However, the T300A variant is associated with increased expression of the small GTPase Rab33b; RAB33B interacts with ATG16L1, as well as other secretory RABs, RAB27B and RAB11A, important for UPEC exocytosis from the urothelium. Finally, inhibition of secretory RABs in bladder epithelial cells increases intracellular UPEC load. Together, our results reveal that UPEC selectively utilize genes important for autophagosome formation to persist in the urothelium, and that the presence of the T300A variant in ATG16L1 is associated with changes in urothelial vesicle trafficking, which disrupts the ability of UPEC to persist, thereby limiting the risk of recurrent UTIs. Abbreviations: 3-PEHPC: 3-pyridinyl ethylidene hydroxyl phosphonocarboxylate; ATG: autophagy; ATG16L1: autophagy related 16 like 1; BECs: bladder epithelial cells; dpi: days post infection; hpi: hours post infection; IF: immunofluorescence; IL1B: interleukin 1 beta; IL6: interleukin 6; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MVB: multivesicular bodies; T300A: Thr300Ala; TNF: tumor necrosis factor; QIR(s): quiescent intracellular reservoir(s); siRNA: short interfering RNA; UPEC: uropathogenic Escherichia coli; UTI(s): urinary tract infection(s); TEM: transmission electron microscopy; WT: wild type.


Subject(s)
Autophagy/genetics , Escherichia coli Infections/metabolism , Urinary Tract Infections/metabolism , Uropathogenic Escherichia coli , Urothelium/microbiology , Animals , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cell Line , Epithelial Cells/metabolism , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Female , Genetic Variation , Humans , Macrophages/metabolism , Mice , Mice, Knockout , Multivesicular Bodies/genetics , Multivesicular Bodies/microbiology , Multivesicular Bodies/pathology , Urinary Bladder/microbiology , Urinary Tract Infections/genetics , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uroplakins/metabolism , Urothelium/cytology , Urothelium/metabolism , Urothelium/ultrastructure , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , rab GTP-Binding Proteins/metabolism
10.
11.
Article in English | MEDLINE | ID: mdl-24009546

ABSTRACT

BACKGROUND: Over-the-counter (OTC) feminine hygiene products come with little warning about possible side effects. This study evaluates in-vitro their effects on Lactobacillus crispatus, which is dominant in the normal vaginal microbiota and helps maintain a healthy mucosal barrier essential for normal reproductive function and prevention of sexually transmitted infections and gynecologic cancer. METHODS: A feminine moisturizer (Vagisil), personal lubricant, and douche were purchased OTC. A topical spermicide (nonoxynol-9) known to alter the vaginal immune barrier was used as a control. L. crispatus was incubated with each product for 2 and 24h and then seeded on agar for colony forming units (CFU). Human vaginal epithelial cells were exposed to products in the presence or absence of L. crispatus for 24h, followed by epithelium-associated CFU enumeration. Interleukin-8 was immunoassayed and ANOVA was used for statistical evaluation. RESULTS: Nonoxynol-9 and Vagisil suppressed Lactobacillus growth at 2h and killed all bacteria at 24h. The lubricant decreased bacterial growth insignificantly at 2h but killed all at 24h. The douche did not have a significant effect. At full strength, all products suppressed epithelial viability and all, except the douche, suppressed epithelial-associated CFU. When applied at non-toxic dose in the absence of bacteria, the douche and moisturizer induced an increase of IL-8, suggesting a potential to initiate inflammatory reaction. In the presence of L. crispatus, the proinflammatory effects of the douche and moisturizer were countered, and IL-8 production was inhibited in the presence of the other products. CONCLUSION: Some OTC vaginal products may be harmful to L. crispatus and alter the vaginal immune environment. Illustrated through these results, L. crispatus is essential in the preservation of the function of vaginal epithelial cells in the presence of some feminine hygiene products. More research should be invested toward these products before they are placed on the market.

12.
Sex Transm Infect ; 89(6): 460-6, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23903808

ABSTRACT

OBJECTIVES: Complex interactions of vaginal microorganisms with the genital tract epithelium shape mucosal innate immunity, which holds the key to sexual and reproductive health. Bacterial vaginosis (BV), a microbiome-disturbance syndrome prevalent in reproductive-age women, occurs commonly in concert with trichomoniasis, and both are associated with increased risk of adverse reproductive outcomes and viral infections, largely attributable to inflammation. To investigate the causative relationships among inflammation, BV and trichomoniasis, we established a model of human cervicovaginal epithelial cells colonised by vaginal Lactobacillus isolates, dominant in healthy women, and common BV species (Atopobium vaginae, Gardnerella vaginalis and Prevotella bivia). METHODS: Colonised epithelia were infected with Trichomonas vaginalis (TV) or exposed to purified TV virulence factors (membrane lipophosphoglycan (LPG), its ceramide-phosphoinositol-glycan core (CPI-GC) or the endosymbiont Trichomonas vaginalis virus (TVV)), followed by assessment of bacterial colony-forming units, the mucosal anti-inflammatory microbicide secretory leucocyte protease inhibitor (SLPI), and chemokines that drive pro-inflammatory, antigen-presenting and T cells. RESULTS: TV reduced colonisation by Lactobacillus but not by BV species, which were found inside epithelial cells. TV increased interleukin (IL)-8 and suppressed SLPI, likely via LPG/CPI-GC, and upregulated IL-8 and RANTES, likely via TVV as suggested by use of purified pathogenic determinants. BV species A vaginae and G vaginalis induced IL-8 and RANTES, and also amplified the pro-inflammatory responses to both LPG/CPI-GC and TVV, whereas P bivia suppressed the TV/TVV-induced chemokines. CONCLUSIONS: These molecular host-parasite-endosymbiont-bacteria interactions explain epidemiological associations and suggest a revised paradigm for restoring vaginal immunity and preventing BV/TV-attributable inflammatory sequelae in women.


Subject(s)
Bacteria/immunology , Epithelial Cells/immunology , Immunity, Innate , Microbial Interactions , Trichomonas vaginalis/immunology , Bacteria/pathogenicity , Cells, Cultured , Chemokines/metabolism , Colony Count, Microbial , Epithelial Cells/microbiology , Epithelial Cells/parasitology , Female , Humans , Secretory Leukocyte Peptidase Inhibitor/metabolism , Trichomonas vaginalis/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...