Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Protein Sci ; 33(3): e4929, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38380729

ABSTRACT

Domains known as von Willebrand factor type D (VWD) are found in extracellular and cell-surface proteins including von Willebrand factor, mucins, and various signaling molecules and receptors. Many VWD domains have a glycine-aspartate-proline-histidine (GDPH) amino-acid sequence motif, which is hydrolytically cleaved post-translationally between the aspartate (Asp) and proline (Pro). The Fc IgG binding protein (FCGBP), found in intestinal mucus secretions and other extracellular environments, contains 13 VWD domains, 11 of which have a GDPH cleavage site. In this study, we investigated the structural and biophysical consequences of Asp-Pro peptide cleavage in a representative FCGBP VWD domain. We found that endogenous Asp-Pro cleavage increases the resistance of the domain to exogenous proteolytic degradation. Tertiary structural interactions made by the newly generated chain termini, as revealed by a crystal structure of an FCGBP segment containing the VWD domain, may explain this observation. Notably, the Gly-Asp peptide bond, upstream of the cleavage site, assumed the cis configuration in the structure. In addition to these local features of the cleavage site, a global organizational difference was seen when comparing the FCGBP segment structure with the numerous other structures containing the same set of domains. Together, these data illuminate the outcome of GDPH cleavage and demonstrate the plasticity of proteins with VWD domains, which may contribute to their evolution for function in a dynamic extracellular environment.


Subject(s)
Dipeptides , Proline , von Willebrand Factor , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism , Aspartic Acid , Peptides
2.
Nat Biomed Eng ; 8(1): 30-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37550425

ABSTRACT

Conventional methods for humanizing animal-derived antibodies involve grafting their complementarity-determining regions onto homologous human framework regions. However, this process can substantially lower antibody stability and antigen-binding affinity, and requires iterative mutational fine-tuning to recover the original antibody properties. Here we report a computational method for the systematic grafting of animal complementarity-determining regions onto thousands of human frameworks. The method, which we named CUMAb (for computational human antibody design; available at http://CUMAb.weizmann.ac.il ), starts from an experimental or model antibody structure and uses Rosetta atomistic simulations to select designs by energy and structural integrity. CUMAb-designed humanized versions of five antibodies exhibited similar affinities to those of the parental animal antibodies, with some designs showing marked improvement in stability. We also show that (1) non-homologous frameworks are often preferred to highest-homology frameworks, and (2) several CUMAb designs that differ by dozens of mutations and that use different human frameworks are functionally equivalent.


Subject(s)
Antibodies , Complementarity Determining Regions , Animals , Humans , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Antibodies/chemistry
3.
Trends Pharmacol Sci ; 44(11): 755-757, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37679271

ABSTRACT

Aberrant expression of transmembrane mucins promotes tumor progression and interferes with immunological and medicinal elimination of cancer cells. In a recent article, Pedram et al. directed an attenuated bacterial mucin-specific protease to HER2-positive tumor cells and observed decreased tumor growth rates and extended survival of mice bearing HER2-positive tumors.

4.
FEBS J ; 290(21): 5196-5203, 2023 11.
Article in English | MEDLINE | ID: mdl-37526947

ABSTRACT

CysD domains are disulfide-rich modules embedded within long O-glycosylated regions of mucin glycoproteins. CysD domains are thought to mediate intermolecular adhesion during the intracellular bioassembly of mucin polymers and perhaps also after secretion in extracellular mucus hydrogels. The human genome encodes 18 CysD domains distributed across three different mucins. To date, experimental structural information is available only for the first CysD domain (CysD1) of the intestinal mucin MUC2, which is one of the most divergent of the CysDs. To provide experimental data on a CysD that is representative of a larger branch of the fold family, we determined the crystal structure of the seventh CysD domain (CysD7) from MUC5AC, a mucin found in the respiratory tract and stomach. The MUC5AC CysD7 structure revealed a single calcium-binding site, contrasting with the two sites in MUC2 CysD1. The MUC5AC CysD7 structure also contained an additional α-helix absent from MUC2 CysD1, with potential functional implications for intermolecular interactions. Lastly, the experimental structure emphasized the flexibility of the loop analogous to the main adhesion loop of MUC2 CysD1, suggesting that both sequence divergence and physical plasticity in this region may contribute to the adaptation of mucin CysD domains.


Subject(s)
Mucins , Mucus , Humans , Mucins/genetics , Genome, Human
6.
Curr Opin Struct Biol ; 79: 102524, 2023 04.
Article in English | MEDLINE | ID: mdl-36753925

ABSTRACT

Contrary to first appearances, mucus structural biology is not an oxymoron. Though mucus hydrogels derive their characteristics largely from intrinsically disordered, heavily glycosylated polypeptide segments, the secreted mucin glycoproteins that constitute mucus undergo an orderly assembly process controlled by folded domains at their termini. Recent structural studies revealed how mucin complexes promote disulphide-mediated polymerization to produce the mucus gel scaffold. Additional protein-protein and protein-glycan interactions likely tune the mesoscale properties, stability, and activities of mucins. Evidence is emerging that even intrinsically disordered glycosylated segments have specific structural roles in the production and properties of mucus. Though soft-matter biophysical approaches to understanding mucus remain highly relevant, high-resolution structural studies of mucins and other mucus components are providing new perspectives on these vital, protective hydrogels.


Subject(s)
Mucins , Mucus , Mucins/metabolism , Mucus/metabolism , Glycoproteins , Polysaccharides/chemistry , Glycosylation
7.
EMBO J ; 42(2): e111869, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36245281

ABSTRACT

Mucus is made of enormous mucin glycoproteins that polymerize by disulfide crosslinking in the Golgi apparatus. QSOX1 is a catalyst of disulfide bond formation localized to the Golgi. Both QSOX1 and mucins are highly expressed in goblet cells of mucosal tissues, leading to the hypothesis that QSOX1 catalyzes disulfide-mediated mucin polymerization. We found that knockout mice lacking QSOX1 had impaired mucus barrier function due to production of defective mucus. However, an investigation on the molecular level revealed normal disulfide-mediated polymerization of mucins and related glycoproteins. Instead, we detected a drastic decrease in sialic acid in the gut mucus glycome of the QSOX1 knockout mice, leading to the discovery that QSOX1 forms regulatory disulfides in Golgi glycosyltransferases. Sialylation defects in the colon are known to cause colitis in humans. Here we show that QSOX1 redox control of sialylation is essential for maintaining mucosal function.


Subject(s)
Glycosyltransferases , Golgi Apparatus , Intestinal Mucosa , Oxidoreductases Acting on Sulfur Group Donors , Animals , Mice , Colon/metabolism , Disulfides/metabolism , Glycoproteins , Glycosyltransferases/metabolism , Golgi Apparatus/metabolism , Mucins/chemistry , Mucins/metabolism , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Intestinal Mucosa/metabolism
8.
FEBS Lett ; 596(22): 2859-2872, 2022 11.
Article in English | MEDLINE | ID: mdl-36214053

ABSTRACT

Formation of disulfide bonds in secreted and cell-surface proteins involves numerous enzymes and chaperones abundant in the endoplasmic reticulum (ER), the first and main site for disulfide bonding in the secretory pathway. Although the Golgi apparatus is the major station after the ER, little is known about thiol-based redox activity in this compartment. QSOX1 and its paralog QSOX2 are the only known Golgi-resident enzymes catalyzing disulfide bonding. The localization of disulfide catalysts in an organelle downstream of the ER in the secretory pathway has long been puzzling. Recently, it has emerged that QSOX1 regulates particular glycosyltransferases, thereby influencing a central activity of the Golgi. Surprisingly, a few important disulfide-mediated multimerization events occurring in the Golgi were found to be independent of QSOX1. These multimerization events depend, however, on the low pH of the Golgi lumen and secretory granules. We compare and contrast disulfide-mediated multimerization in the ER vs. the Golgi to illustrate the variety of mechanisms controlling covalent supramolecular assembly of secreted proteins.


Subject(s)
Endoplasmic Reticulum , Golgi Apparatus , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Proteins/metabolism , Oxidation-Reduction , Disulfides/metabolism
9.
Cell ; 185(22): 4206-4215.e11, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36206754

ABSTRACT

Mucus protects the epithelial cells of the digestive and respiratory tracts from pathogens and other hazards. Progress in determining the molecular mechanisms of mucus barrier function has been limited by the lack of high-resolution structural information on mucins, the giant, secreted, gel-forming glycoproteins that are the major constituents of mucus. Here, we report how mucin structures we determined enabled the discovery of an unanticipated protective role of mucus: managing the toxic transition metal copper. Using two juxtaposed copper binding sites, one for Cu2+ and the other for Cu1+, the intestinal mucin, MUC2, prevents copper toxicity by blocking futile redox cycling and the squandering of dietary antioxidants, while nevertheless permitting uptake of this important trace metal into cells. These findings emphasize the value of molecular structure in advancing mucosal biology, while introducing mucins, produced in massive quantities to guard extensive mucosal surfaces, as extracellular copper chaperones.


Subject(s)
Copper , Mucins , Mucins/metabolism , Mucin-2 , Copper/analysis , Copper/metabolism , Intestines , Mucus/metabolism , Intestinal Mucosa/metabolism
10.
Blood ; 140(26): 2835-2843, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36179246

ABSTRACT

The von Willebrand factor (VWF) glycoprotein is stored in tubular form in Weibel-Palade bodies (WPBs) before secretion from endothelial cells into the bloodstream. The organization of VWF in the tubules promotes formation of covalently linked VWF polymers and enables orderly secretion without polymer tangling. Recent studies have described the high-resolution structure of helical tubular cores formed in vitro by the D1D2 and D'D3 amino-terminal protein segments of VWF. Here we show that formation of tubules with the helical geometry observed for VWF in intracellular WPBs requires also the VWA1 (A1) domain. We reconstituted VWF tubules from segments containing the A1 domain and discovered it to be inserted between helical turns of the tubule, altering helical parameters and explaining the increased robustness of tubule formation when A1 is present. The conclusion from this observation is that the A1 domain has a direct role in VWF assembly, along with its known activity in hemostasis after secretion.


Subject(s)
Endothelial Cells , von Willebrand Factor , von Willebrand Factor/metabolism , Endothelial Cells/metabolism , Weibel-Palade Bodies/metabolism , Hemostasis
11.
Proc Natl Acad Sci U S A ; 119(15): e2116790119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377815

ABSTRACT

The glycoprotein von Willebrand factor (VWF) contributes to hemostasis by stanching injuries in blood vessel walls. A distinctive feature of VWF is its assembly into long, helical tubules in endothelial cells prior to secretion. When VWF is released into the bloodstream, these tubules unfurl to release linear polymers that bind subendothelial collagen at wound sites, recruit platelets, and initiate the clotting cascade. VWF evolved from gel-forming mucins, the polymeric glycoproteins that coat and protect exposed epithelia. Despite the divergent function of VWF in blood vessel repair, sequence conservation and shared domain organization imply that VWF retained key aspects of the mucin bioassembly mechanism. Here, we show using cryo-electron microscopy that the ability to form tubules, a property hitherto thought to have arisen as a VWF adaptation to the vasculature, is a feature of the amino-terminal region of mucin. This segment of the human intestinal gel-forming mucin (MUC2) was found to self-assemble into tubules with a striking resemblance to those of VWF itself. To facilitate a comparison, we determined the residue-resolution structure of tubules formed by the homologous segment of VWF. The structures of the MUC2 and VWF tubules revealed the flexible joints and the intermolecular interactions required for tubule formation. Steric constraints in full-length MUC2 suggest that linear filaments, a previously observed supramolecular assembly form, are more likely than tubules to be the physiological mucin storage intermediate. Nevertheless, MUC2 tubules indicate a possible evolutionary origin for VWF tubules and elucidate design principles present in mucins and VWF.


Subject(s)
Evolution, Molecular , Mucin-1 , von Willebrand Factor , Mucin-1/chemistry , Protein Domains , Protein Structure, Secondary , von Willebrand Factor/chemistry
12.
mBio ; 12(6): e0260221, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34844425

ABSTRACT

In the parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, all mRNAs are trans-spliced to generate a common 5' exon derived from the spliced leader (SL) RNA. Perturbations of protein translocation across the endoplasmic reticulum (ER) induce the spliced leader RNA silencing (SLS) pathway. SLS activation is mediated by a serine-threonine kinase, PK3, which translocates from the cytosolic face of the ER to the nucleus, where it phosphorylates the TATA-binding protein TRF4, leading to the shutoff of SL RNA transcription, followed by induction of programmed cell death. Here, we demonstrate that SLS is also induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. The PK3 kinase, which integrates SLS signals, is modified by phosphorylation on multiple sites. To determine which of the phosphorylation events activate PK3, several individual mutations or their combination were generated. These mutations failed to completely eliminate the phosphorylation or translocation of the kinase to the nucleus. The structures of PK3 kinase and its ATP binding domain were therefore modeled. A conserved phenylalanine at position 771 was proposed to interact with ATP, and the PK3F771L mutation completely eliminated phosphorylation under SLS, suggesting that the activation involves most if not all of the phosphorylation sites. The study suggests that the SLS occurs broadly in response to failures in protein sorting, folding, or modification across multiple compartments. IMPORTANCE In this study, we found that SLS is induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. We also report on the autophosphorylation of PK3 during SLS induction. This study has implications for our understanding of how trypanosomes keep the homeostasis between the ER and the mitochondria and suggests that PK3 may participate in the connection between these two organelles. The pathway, when induced, leads to the suicide of these parasites, and its induction offers a potential novel drug target against these parasites.


Subject(s)
Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Mitochondrial Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protozoan Proteins/metabolism , RNA, Protozoan/genetics , RNA, Spliced Leader/genetics , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/parasitology , Cell Nucleus/genetics , Cell Nucleus/metabolism , Endoplasmic Reticulum/genetics , Golgi Apparatus/genetics , Humans , Mitochondrial Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Transport , Protozoan Proteins/genetics , RNA Interference , RNA Splicing , RNA, Protozoan/metabolism , RNA, Spliced Leader/metabolism , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/metabolism
13.
FEBS J ; 288(22): 6465-6475, 2021 11.
Article in English | MEDLINE | ID: mdl-34077620

ABSTRACT

Zymogen granule membrane protein 16 (ZG16) is produced in organs that secrete large quantities of enzymes and other proteins into the digestive tract. ZG16 binds microbial pathogens, and lower ZG16 expression levels correlate with colorectal cancer, but the physiological function of the protein is poorly understood. One prominent attribute of ZG16 is its ability to bind glycans, but other aspects of the protein may also contribute to activity. An intriguing feature of ZG16 is a CXXC motif at the carboxy terminus. Here, we describe crystal structures and biochemical studies showing that the CXXC motif is on a flexible tail, where it contributes little to structure or stability but is available to engage in redox reactions. Specifically, we demonstrate that the ZG16 cysteine thiols can be oxidized to a disulfide by quiescin sulfhydryl oxidase 1, which is a sulfhydryl oxidase present together with ZG16 in the Golgi apparatus and in mucus, as well as by protein disulfide isomerase. ZG16 crystal structures also draw attention to a nonproline cis peptide bond that can isomerize within the protein and to the mobility of glycine-rich loops in the glycan-binding site. An understanding of the properties of the ZG16 CXXC motif and the discovery of internal conformational switches extend existing knowledge relating to the glycan-binding activity of the protein.


Subject(s)
Colonic Neoplasms/metabolism , Lectins/metabolism , Crystallography, X-Ray , Humans , Lectins/chemistry , Models, Molecular , Oxidation-Reduction
14.
Nature ; 593(7859): 343-344, 2021 05.
Article in English | MEDLINE | ID: mdl-33953388
15.
Cell ; 183(3): 717-729.e16, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33031746

ABSTRACT

The respiratory and intestinal tracts are exposed to physical and biological hazards accompanying the intake of air and food. Likewise, the vasculature is threatened by inflammation and trauma. Mucin glycoproteins and the related von Willebrand factor guard the vulnerable cell layers in these diverse systems. Colon mucins additionally house and feed the gut microbiome. Here, we present an integrated structural analysis of the intestinal mucin MUC2. Our findings reveal the shared mechanism by which complex macromolecules responsible for blood clotting, mucociliary clearance, and the intestinal mucosal barrier form protective polymers and hydrogels. Specifically, cryo-electron microscopy and crystal structures show how disulfide-rich bridges and pH-tunable interfaces control successive assembly steps in the endoplasmic reticulum and Golgi apparatus. Remarkably, a densely O-glycosylated mucin domain performs an organizational role in MUC2. The mucin assembly mechanism and its adaptation for hemostasis provide the foundation for rational manipulation of barrier function and coagulation.


Subject(s)
Biopolymers/metabolism , Mucins/metabolism , von Willebrand Factor/metabolism , Amino Acid Sequence , Animals , Cryoelectron Microscopy , Disulfides/metabolism , Female , Glycosylation , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Mice, Inbred C57BL , Models, Molecular , Mucins/chemistry , Mucins/ultrastructure , Peptides/chemistry , Protein Domains , Protein Multimerization , von Willebrand Factor/chemistry , von Willebrand Factor/ultrastructure
16.
Proc Natl Acad Sci U S A ; 117(44): 27374-27380, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33077585

ABSTRACT

The complex environment of biological cells and tissues has motivated development of three-dimensional (3D) imaging in both light and electron microscopies. To this end, one of the primary tools in fluorescence microscopy is that of computational deconvolution. Wide-field fluorescence images are often corrupted by haze due to out-of-focus light, i.e., to cross-talk between different object planes as represented in the 3D image. Using prior understanding of the image formation mechanism, it is possible to suppress the cross-talk and reassign the unfocused light to its proper source post facto. Electron tomography based on tilted projections also exhibits a cross-talk between distant planes due to the discrete angular sampling and limited tilt range. By use of a suitably synthesized 3D point spread function, we show here that deconvolution leads to similar improvements in volume data reconstructed from cryoscanning transmission electron tomography (CSTET), namely a dramatic in-plane noise reduction and improved representation of features in the axial dimension. Contrast enhancement is demonstrated first with colloidal gold particles and then in representative cryotomograms of intact cells. Deconvolution of CSTET data collected from the periphery of an intact nucleus revealed partially condensed, extended structures in interphase chromatin.


Subject(s)
Electron Microscope Tomography/methods , Image Enhancement/methods , Imaging, Three-Dimensional , Microscopy, Electron, Scanning Transmission/methods , Algorithms , Cell Line , Frozen Sections , Gold Colloid , Humans
19.
Antioxid Redox Signal ; 33(10): 665-678, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32517586

ABSTRACT

Aims: The post-translational oxidation of methionine to methionine sulfoxide (MetSO) is a reversible process, enabling the repair of oxidative damage to proteins and the use of sulfoxidation as a regulatory switch. MetSO reductases catalyze the stereospecific reduction of MetSO. One of the mammalian MetSO reductases, MsrB3, has a signal sequence for entry into the endoplasmic reticulum (ER). In the ER, MsrB3 is expected to encounter a distinct redox environment compared with its paralogs in the cytosol, nucleus, and mitochondria. We sought to determine the location and arrangement of MsrB3 redox-active cysteines, which may couple MsrB3 activity to other redox events in the ER. Results: We determined the human MsrB3 structure by using X-ray crystallography. The structure revealed that a disulfide bond near the protein amino terminus is distant in space from the active site. Nevertheless, biochemical assays showed that these amino-terminal cysteines are oxidized by the MsrB3 active site after its reaction with MetSO. Innovation: This study reveals a mechanism to shuttle oxidizing equivalents from the primary MsrB3 active site toward the enzyme surface, where they would be available for further dithiol-disulfide exchange reactions. Conclusion: Conformational changes must occur during the MsrB3 catalytic cycle to transfer oxidizing equivalents from the active site to the amino-terminal redox-active disulfide. The accessibility of this exposed disulfide may help couple MsrB3 activity to other dithiol-disulfide redox events in the secretory pathway.


Subject(s)
Electron Transport , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/metabolism , Models, Molecular , Protein Conformation , Signal Transduction , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Humans , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Structure-Activity Relationship
20.
Sci Adv ; 6(14): eaay9572, 2020 04.
Article in English | MEDLINE | ID: mdl-32270040

ABSTRACT

The endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic ß-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species. We show that RAVs exist as distinct, highly dynamic structures separate from the intact ER reticular architecture that interact with mitochondria via direct intermembrane contacts. These findings describe a new ER subcompartment within cells.


Subject(s)
Cytoplasmic Vesicles/metabolism , Endoplasmic Reticulum/metabolism , Ribosomes/metabolism , Animals , Biological Transport , Cryoelectron Microscopy , Cytoplasmic Vesicles/ultrastructure , Endoplasmic Reticulum/ultrastructure , Golgi Apparatus/metabolism , Golgi Apparatus/ultrastructure , Mice , Mitochondria/metabolism , Mitochondria/ultrastructure , Molecular Imaging , Organ Specificity , Rats , Ribosomes/ultrastructure , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...