Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742839

ABSTRACT

Aneurysm is the second-most common disease affecting the aorta worldwide after atherosclerosis. While several clinical metabolomic studies have been reported, no study has reported deep metabolomic phenotyping in experimental animal models of aortic aneurysm. We performed a targeted metabolomics study on the blood and aortas of an experimental mice model of aortic aneurysm generated by high-cholesterol diet and angiotensin II in Ldlr-/- mice. The mice model showed a significant increase in media/lumen ratio and wall area, which is associated with lipid deposition within the adventitia, describing a hypertrophic remodeling with an aneurysm profile of the abdominal aorta. Altered aortas showed increased collagen remodeling, disruption of lipid metabolism, decreased glucose, nitric oxide and lysine metabolisms, and increased polyamines and asymmetric dimethylarginine (ADMA) production. In blood, a major hyperlipidemia was observed with decreased concentrations of glutamine, glycine, taurine, and carnitine, and increased concentrations of the branched amino acids (BCAA). The BCAA/glycine and BCAA/glutamine ratios discriminated with very good sensitivity and specificity between aneurysmatic and non-aneurysmatic mice. To conclude, our results reveal that experimental induction of aortic aneurysms causes a profound alteration in the metabolic profile in aortas and blood, mainly centered on an alteration of NO, lipid, and energetic metabolisms.


Subject(s)
Aortic Aneurysm, Abdominal , Hypercholesterolemia , Hyperlipidemias , Receptors, LDL/metabolism , Angiotensin II/metabolism , Animals , Aorta, Abdominal/metabolism , Aortic Aneurysm, Abdominal/metabolism , Disease Models, Animal , Energy Metabolism , Glutamine/metabolism , Glycine/metabolism , Hypercholesterolemia/metabolism , Hyperlipidemias/metabolism , Lipids , Metabolomics , Mice , Mice, Inbred C57BL , Nitric Oxide/metabolism
2.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628350

ABSTRACT

Hypoxia and inflammation play a major role in revascularization following ischemia. Sildenafil inhibits phosphodiesterase-5, increases intracellular cGMP and induces revascularization through a pathway which remains incompletely understood. Thus, we investigated the effect of sildenafil on post-ischemic revascularization. The left femoral artery was ligated in control and sildenafil-treated (25 mg/kg per day) rats. Vascular density was evaluated and expressed as the left/right leg (L/R) ratio. In control rats, L/R ratio was 33 ± 2% and 54 ± 9%, at 7- and 21-days post-ligation, respectively, and was significantly increased in sildenafil-treated rats to 47 ± 4% and 128 ± 11%, respectively. A neutralizing anti-VEGF antibody significantly decreased vascular density (by 0.48-fold) in control without effect in sildenafil-treated animals. Blood flow and arteriolar density followed the same pattern. In the ischemic leg, HIF-1α and VEGF expression levels increased in control, but not in sildenafil-treated rats, suggesting that sildenafil did not induce angiogenesis. PI3-kinase, Akt and eNOS increased after 7 days, with down-regulation after 21 days. Sildenafil induced outward remodeling or arteriogenesis in mesenteric resistance arteries in association with eNOS protein activation. We conclude that sildenafil treatment increased tissue blood flow and arteriogenesis independently of VEGF, but in association with PI3-kinase, Akt and eNOS activation.


Subject(s)
Hindlimb , Ischemia , Nitric Oxide Synthase Type III , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sildenafil Citrate , Animals , Hindlimb/blood supply , Hindlimb/drug effects , Hindlimb/metabolism , Ischemia/drug therapy , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , Sildenafil Citrate/pharmacology , Vascular Endothelial Growth Factor A/metabolism
3.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769516

ABSTRACT

(1) Background: Chronic increases in blood flow, as in cardiovascular diseases, induce outward arterial remodeling. Thrombospondin-1 (TSP-1) is known to interact with matrix proteins and immune cell-surface receptors, but its contribution to flow-mediated remodeling in the microcirculation remains unknown. (2) Methods: Mesenteric arteries were ligated in vivo to generate high- (HF) and normal-flow (NF) arteries in wild-type (WT) and TSP-1-deleted mice (TSP-1-/-). After 7 days, arteries were isolated and studied ex vivo. (3) Results: Chronic increases in blood flow induced outward remodeling in WT mice (increasing diameter from 221 ± 10 to 280 ± 10 µm with 75 mmHg intraluminal pressure) without significant effect in TSP-1-/- (296 ± 18 to 303 ± 14 µm), neutropenic or adoptive bone marrow transfer mice. Four days after ligature, pro inflammatory gene expression levels (CD68, Cox2, Gp91phox, p47phox and p22phox) increased in WT HF arteries but not in TSP-1-/- mice. Perivascular neutrophil accumulation at day 4 was significantly lower in TSP-1-/- than in WT mice. (4) Conclusions: TSP-1 origin is important; indeed, circulating TSP-1 participates in vasodilation, whereas both circulating and tissue TSP-1 are involved in arterial wall thickness and diameter expansion.


Subject(s)
Endothelium, Vascular/metabolism , Mesenteric Arteries/physiology , Thrombospondin 1/metabolism , Animals , Mesenteric Arteries/metabolism , Mice , Mice, Knockout , Microcirculation , Models, Animal , Regional Blood Flow , Thrombospondin 1/genetics , Vasodilation
4.
FASEB J ; 35(7): e21678, 2021 07.
Article in English | MEDLINE | ID: mdl-34133045

ABSTRACT

Hypertension is associated with excessive reactive oxygen species (ROS) production in vascular cells. Mitochondria undergo fusion and fission, a process playing a role in mitochondrial function. OPA1 is essential for mitochondrial fusion. Loss of OPA1 is associated with ROS production and cell dysfunction. We hypothesized that mitochondria fusion could reduce oxidative stress that defect in fusion would exacerbate hypertension. Using (a) Opa1 haploinsufficiency in isolated resistance arteries from Opa1+/- mice, (b) primary vascular cells from Opa1+/- mice, and (c) RNA interference experiments with siRNA against Opa1 in vascular cells, we investigated the role of mitochondria fusion in hypertension. In hypertension, Opa1 haploinsufficiency induced altered mitochondrial cristae structure both in vascular smooth muscle and endothelial cells but did not modify protein level of long and short forms of OPA1. In addition, we demonstrated an increase of mitochondrial ROS production, associated with a decrease of superoxide dismutase 1 protein expression. We also observed an increase of apoptosis in vascular cells and a decreased VSMCs proliferation. Blood pressure, vascular contractility, as well as endothelium-dependent and -independent relaxation were similar in Opa1+/- , WT, L-NAME-treated Opa1+/- and WT mice. Nevertheless, chronic NO-synthase inhibition with L-NAME induced a greater hypertension in Opa1+/- than in WT mice without compensatory arterial wall hypertrophy. This was associated with a stronger reduction in endothelium-dependent relaxation due to excessive ROS production. Our results highlight the protective role of mitochondria fusion in the vasculature during hypertension by limiting mitochondria ROS production.


Subject(s)
GTP Phosphohydrolases/physiology , Hypertension/prevention & control , Mitochondrial Dynamics , Protective Agents/administration & dosage , Animals , Apoptosis , Enzyme Inhibitors/toxicity , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , NG-Nitroarginine Methyl Ester/toxicity , Oxidative Stress , Reactive Oxygen Species/metabolism
5.
Int J Obes (Lond) ; 45(5): 1074-1085, 2021 05.
Article in English | MEDLINE | ID: mdl-33637953

ABSTRACT

BACKGROUND/OBJECTIVES: Maternal obesity impacts vascular functions linked to metabolic disorders in offspring, leading to cardiovascular diseases during adulthood. Even if the relation between prenatal conditioning of cardiovascular diseases by maternal obesity and vascular function begins to be documented, little is known about resistance arteries. They are of particular interest because of their specific role in the regulation of local blood flow. Then our study aims to determine if maternal obesity can directly program fetal vascular dysfunction of resistance arteries, independently of metabolic disorders. METHODS: With a model of rats exposed in utero to mild maternal diet-induced obesity (OMO), we investigated third-order mesenteric arteries of 4-month old rats in absence of metabolic disorders. The methylation profile of these vessels was determined by reduced representation bisulfite sequencing (RRBS). Vascular structure and reactivity were investigated using histomorphometry analysis and wire-myography. The metabolic function was evaluated by insulin and glucose tolerance tests, plasma lipid profile, and adipose tissue analysis. RESULTS: At 4 months of age, small mesenteric arteries of OMO presented specific epigenetic modulations of matrix metalloproteinases (MMPs), collagens, and potassium channels genes in association with an outward remodeling and perturbations in the endothelium-dependent vasodilation pathways (greater contribution of EDHFs pathway in OMO males compared to control rats, and greater implication of PGI2 in OMO females compared to control rats). These vascular modifications were detected in absence of metabolic disorders. CONCLUSIONS: Our study reports a specific methylation profile of resistance arteries associated with vascular remodeling and vasodilation balance perturbations in offspring exposed in utero to maternal obesity, in absence of metabolic dysfunctions.


Subject(s)
Endothelium, Vascular , Epigenesis, Genetic , Obesity, Maternal/physiopathology , Prenatal Exposure Delayed Effects/physiopathology , Sex Factors , Vascular Resistance , Animals , Collagen/genetics , DNA Methylation , Diet, High-Fat , Endothelium, Vascular/physiopathology , Female , Male , Matrix Metalloproteinases/genetics , Potassium Channels/genetics , Pregnancy , Rats , Rats, Sprague-Dawley
6.
Autoimmun Rev ; 19(9): 102525, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32240856

ABSTRACT

Azathioprine (AZA), an oral immunosuppressant, is safe during pregnancy. Some reports suggested different impairments in the offspring of mothers with autoimmune diseases (AI) exposed in utero to AZA. These observations are available from retrospective studies or case reports. However, data with respect to the long-term safety in the antenatally exposed child are still lacking. The aim of this study is to summarize the current knowledge in this field and to focus on the need for a prospective study on this population. We performed a PubMed search using several search terms. The actual data show that although the risk of congenital anomalies in offspring, as well as the infertility risk, are similar to those found in general population, there is a higher incidence of prematurity, of lower weight at birth and an intra-uterine delay of development. There is also an increased risk of materno- fetal infections, especially cytomegalovirus infection. Some authors raise the interrogations about neurocognitive impairment. Even though the adverse outcomes might well be a consequence of maternal illness and disease activity, interest has been raised about a contribution of this drug. However, the interferences between the external agent (in utero exposure to AZA), with the host (child genetic susceptibility, immune system anomalies, emotional status), environment (public health, social context, availability of health care), economic, social, and behavioral conditions, cultural patterns, are complex and represent confounding factors. In conclusion, it is necessary to perform studies on the medium and long-term outcome of children born by mothers with autoimmune diseases, treated with AZA, in order to show the safety of AZA exposure. Only large-scale population studies with long-term follow-up will allow to formally conclude in this field. TAKE HOME MESSAGES.


Subject(s)
Autoimmune Diseases/drug therapy , Azathioprine/administration & dosage , Azathioprine/adverse effects , Pregnancy Complications/drug therapy , Prenatal Exposure Delayed Effects/chemically induced , Azathioprine/therapeutic use , Child , Female , Humans , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/adverse effects , Immunosuppressive Agents/therapeutic use , Pregnancy , Retrospective Studies
7.
J Am Heart Assoc ; 9(5): e013895, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32102616

ABSTRACT

Background The cardiovascular protective effects of estrogens in premenopausal women depend mainly on estrogen receptor α (ERα). ERα activates nuclear gene transcription regulation and membrane-initiated signaling. The latter plays a key role in estrogen-dependent activation of endothelial NO synthase. The goal of the present work was to determine the respective roles of the 2 ERα activities in endothelial function and cardiac and kidney damage in young and old female mice with hypertension, which is a major risk factor in postmenopausal women. Methods and Results Five- and 18-month-old female mice lacking either ERα (ERα-/-), the nuclear activating function AF2 of ERα (AF2°), or membrane-located ERα (C451A) were treated with angiotensin II (0.5 mg/kg per day) for 1 month. Systolic blood pressure, left ventricle weight, vascular reactivity, and kidney function were then assessed. Angiotensin II increased systolic blood pressure, ventricle weight, and vascular contractility in ERα-/- and AF2° mice more than in wild-type and C451A mice, independent of age. In both the aorta and mesenteric resistance arteries, angiotensin II and aging reduced endothelium-dependent relaxation in all groups, but this effect was more pronounced in ERα-/- and AF2° than in the wild-type and C451A mice. Kidney inflammation and oxidative stress, as well as blood urea and creatinine levels, were also more pronounced in old hypertensive ERα-/- and AF2° than in old hypertensive wild-type and C451A mice. Conclusions The nuclear ERα-AF2 dependent function attenuates angiotensin II-dependent hypertension and protects target organs in aging mice, whereas membrane ERα signaling does not seem to play a role.


Subject(s)
Aging/metabolism , Estrogen Receptor alpha/metabolism , Hypertension/prevention & control , Hypertrophy, Left Ventricular/prevention & control , Nephritis/prevention & control , Age Factors , Aging/genetics , Angiotensin II , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiopathology , Arterial Pressure , Disease Models, Animal , Estrogen Receptor alpha/deficiency , Estrogen Receptor alpha/genetics , Female , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/physiopathology , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Kidney/metabolism , Kidney/physiopathology , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice, Knockout , Nephritis/etiology , Nephritis/metabolism , Nephritis/physiopathology , Vasodilation , Ventricular Function, Left , Ventricular Remodeling
8.
Autoimmun Rev ; 17(12): 1153-1168, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30316994

ABSTRACT

The relapse rate in antiphospholipid syndrome (APS) remains high, i.e. around 20%-21% at 5 years in thrombotic APS and 20-28% in obstetrical APS [2, 3]. Hydroxychloroquine (HCQ) appears as an additional therapy, as it possesses immunomodulatory and anti-thrombotic various effects [4-16]. Our group recently obtained the orphan designation of HCQ in antiphospholipid syndrome by the European Medicine Agency. Furthermore, the leaders of the project made the proposal of an international project, HIBISCUS, about the use of Hydroxychloroquine in secondary prevention of obstetrical and thrombotic events in primary APS. This study has been launched in several countries and at now, 53 centers from 16 countries participate to this international trial. This trial consists in two parts: a retrospective and a prospective study. The French part of the trial in thrombosis has been granted by the French Minister of Health in December 2015 (the academic trial independent of the pharmaceutical industry PHRC N PAPIRUS) and is coordinated by one of the members of the leading consortium of HIBISCUS.


Subject(s)
Antiphospholipid Syndrome/complications , Delivery, Obstetric , Hydroxychloroquine/therapeutic use , Thrombosis/prevention & control , Female , Humans , Pregnancy , Pregnancy Outcome , Secondary Prevention , Thrombosis/etiology
9.
Autoimmun Rev ; 17(8): 739-745, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29885541

ABSTRACT

Primary antiphospholipid syndrome (PAPS) and antiphospholipid syndrome associated to lupus (SAPS) have several overlapping characteristics. As systemic manifestations are also reported in patients with PAPS, and as a subgroup of PAPS patients could evaluate to a SAPS, the differentiation between the two types of APS could be performed based on the clinical experience of the medical teams and is related to a variety of clinical, biological, histological and genetic features. Several data are available in the literature with respect to the identification of distinctive features between these two entities. However, there are some limitation in the interpretation of results issued from studies performed prior to updated Sydney criteria. Based on recent data, a certain number of features more frequent in one type of APS as compared to the other could be distinguished. The major differentiation between these two entities is genetical. New genetic data allowing the identification of specific subgroups of APS are ongoing.


Subject(s)
Antiphospholipid Syndrome/complications , Antiphospholipid Syndrome/diagnosis , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Antibodies, Antiphospholipid/immunology , Antiphospholipid Syndrome/immunology , Humans , Lupus Erythematosus, Systemic/immunology
10.
Front Physiol ; 9: 350, 2018.
Article in English | MEDLINE | ID: mdl-29670546

ABSTRACT

Aim/hypothesis:In utero exposure to maternal diabetes increases the risk of developing hypertension and cardiovascular disorders during adulthood. We have previously shown that this is associated with changes in vascular tone in favor of a vasoconstrictor profile, which is involved in the development of hypertension. This excessive constrictor tone has also a strong impact on vascular structure. Our objective was to study the impact of in utero exposure to maternal diabetes on vascular structure and remodeling induced by chronic changes in hemodynamic parameters. Methods and Results: We used an animal model of rats exposed in utero to maternal hyperglycemia (DMO), which developed hypertension at 6 months of age. At a pre-hypertensive stage (3 months of age), we observed deep structural modifications of the vascular wall without any hemodynamic perturbations. Indeed, in basal conditions, resistance arteries of DMO rats are smaller than those of control mother offspring (CMO) rats; in addition, large arteries like thoracic aorta of DMO rats have an increase of smooth muscle cell attachments to elastic lamellae. In an isolated perfused kidney, we also observed a leftward shift of the flow/pressure relationship, suggesting a rise in renal peripheral vascular resistance in DMO compared to CMO rats. In this context, we studied vascular remodeling in response to reduced blood flow by in vivo mesenteric arteries ligation. In DMO rats, inward remodeling induced by a chronic reduction in blood flow (1 or 3 weeks after ligation) did not occur by contrast to CMO rats in which arterial diameter decreased from 428 ± 17 µm to 331 ± 20 µm (at 125 mmHg, p = 0.001). In these animals, the transglutaminase 2 (TG2) pathway, essential for inward remodeling development in case of flow perturbations, was not activated in low-flow (LF) mesenteric arteries. Finally, in old hypertensive DMO rats (18 months of age), we were not able to detect a pressure-induced remodeling in thoracic aorta. Conclusions: Our results demonstrate for the first time that in utero exposure to maternal diabetes induces deep changes in the vascular structure. Indeed, the early narrowing of the microvasculature and the structural modifications of conductance arteries could be a pre-emptive adaptation to fetal programming of hypertension.

11.
PLoS One ; 12(9): e0185319, 2017.
Article in English | MEDLINE | ID: mdl-28950003

ABSTRACT

The Epithelial Sodium Channel (ENaC) is a key player in renal sodium homeostasis. The expression of α ß Î³ ENaC subunits has also been described in the endothelium and vascular smooth muscle, suggesting a role in vascular function. We recently demonstrated that endothelial ENaC is involved in aldosterone-modulated endothelial stiffness. Here we explore the functional role of the endothelial αENaC subunit in vascular function in vivo. Compared to littermates, mice with conditional αENaC subunit gene inactivation in the endothelium only (endo-αENaC Knock Out mice) had no difference in their physiological parameters such as systolic blood pressure or heart rate. Acute and long-term renal Na+ handlings were not affected, indicating that endothelial αENaC subunit is not involved in renal sodium balance. Pharmacological inhibition of ENaC with benzamil blunted acetylcholine-induced nitric oxide production in mesenteric arteries from wild type mice but not in endo-αENaC KO mice, suggesting a critical role of endothelial ENaC in agonist-induced nitric oxide production. In endo-αENaC KO mice, compensatory mechanisms occurred and steady state vascular function was not altered except for flow-mediated dilation. Our data suggest that endothelial αENaC contributes to vascular endothelial function in vivo.


Subject(s)
Endothelium, Vascular/physiology , Epithelial Sodium Channels/physiology , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic , Real-Time Polymerase Chain Reaction
12.
Sci Rep ; 7: 45625, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28361992

ABSTRACT

Diabetes Mellitus is associated with severe cardiovascular disorders involving the renin-angiotensin system, mainly through activation of the angiotensin II type 1 receptor (AT1R). Although the type 2 receptor (AT2R) opposes the effects of AT1R, with vasodilator and anti-trophic properties, its role in diabetes is debatable. Thus we investigated AT2R-mediated dilatation in a model of type 1 diabetes induced by streptozotocin in 5-month-old male mice lacking AT2R (AT2R-/y). Glucose tolerance was reduced and markers of inflammation and oxidative stress (cyclooxygenase-2, gp91phox p22phox and p67phox) were increased in AT2R-/y mice compared to wild-type (WT) animals. Streptozotocin-induced hyperglycaemia was higher in AT2R-/y than in WT mice. Arterial gp91phox and MnSOD expression levels in addition to blood 8-isoprostane and creatinine were further increased in diabetic AT2R-/y mice compared to diabetic WT mice. AT2R-dependent dilatation in both isolated mesenteric resistance arteries and perfused kidneys was greater in diabetic mice than in non-diabetic animals. Thus, in type 1 diabetes, AT2R may reduce glycaemia and display anti-oxidant and/or anti-inflammatory properties in association with greater vasodilatation in mesenteric arteries and in the renal vasculature, a major target of diabetes. Therefore AT2R might represent a new therapeutic target in diabetes.


Subject(s)
Diabetes Mellitus, Type 1/physiopathology , Dilatation, Pathologic/physiopathology , Microvessels/physiopathology , Receptor, Angiotensin, Type 2/physiology , Animals , Diabetes Mellitus, Experimental/physiopathology , Disease Models, Animal , Inflammation/metabolism , Kidney/blood supply , Kidney/physiopathology , Male , Mesenteric Arteries/physiopathology , Mice, Transgenic , Oxidative Stress , Receptor, Angiotensin, Type 1/metabolism , Vascular Resistance
13.
PLoS One ; 11(1): e0146830, 2016.
Article in English | MEDLINE | ID: mdl-26756337

ABSTRACT

Epidemiologic studies have demonstrated that cardiovascular risk is not only determined by conventional risk factors in adulthood, but also by early life events which may reprogram vascular function. To evaluate the effect of maternal diabetes on fetal programming of vascular tone in offspring and its evolution during adulthood, we investigated vascular reactivity of third order mesenteric arteries from diabetic mother offspring (DMO) and control mother offspring (CMO) aged 3 and 18 months. In arteries isolated from DMO the relaxation induced by prostacyclin analogues was reduced in both 3- and 18-month old animals although endothelium (acetylcholine)-mediated relaxation was reduced in 18-month old DMO only. Endothelium-independent (sodium nitroprusside) relaxation was not affected. Pressure-induced myogenic tone, which controls local blood flow, was reduced in 18-month old CMO compared to 3-month old CMO. Interestingly, myogenic tone was maintained at a high level in 18-month old DMO even though agonist-induced vasoconstriction was not altered. These perturbations, in 18-months old DMO rats, were associated with an increased pMLC/MLC, pPKA/PKA ratio and an activated RhoA protein. Thus, we highlighted perturbations in the reactivity of resistance mesenteric arteries in DMO, at as early as 3 months of age, followed by the maintenance of high myogenic tone in older rats. These modifications are in favour of excessive vasoconstrictor tone. These results evidenced a fetal programming of vascular functions of resistance arteries in adult rats exposed in utero to maternal diabetes, which could explain a re-setting of vascular functions and, at least in part, the occurrence of hypertension later in life.


Subject(s)
Hyperglycemia/complications , Microvessels/pathology , Microvessels/physiopathology , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Animals , Animals, Newborn , Blood Pressure , Body Weight , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/physiopathology , Epoprostenol/metabolism , Female , In Vitro Techniques , Mesenteric Arteries/pathology , Mesenteric Arteries/physiopathology , Pregnancy , Rats, Sprague-Dawley , Vasoconstriction , Vasodilation
14.
Cardiovasc Diabetol ; 13: 55, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24581152

ABSTRACT

BACKGROUND: A chronic increase in blood flow in resistance arteries is associated with increased lumen diameter (outward remodeling) and improved endothelium (NO)-mediated relaxation. Flow-mediated remodeling of resistance arteries is essential for revascularization in ischemic diseases. Nevertheless, it is impaired in 12 to 24-month old rats and in young Zucker Diabetic Fatty (ZDF) rats due to advanced glycation end products (AGEs) and oxidative stress. As type 2 diabetes occurs preferentially in older subjects we investigated flow-mediated remodeling and the effect of the AGEs breaker ALT-711 associated or not to the antioxidant TEMPOL in one-year old lean (LZ) and ZDF rats. METHODS: Mesenteric resistance arteries were exposed to high (HF) or normal blood flow (NF) in vivo. They were collected after 2 weeks for in vitro analysis. RESULTS: In LZ rats, diameter expansion did not occur despite a significant increase in blood flow in HF arteries. Nevertheless, endothelium-mediated relaxation was higher in HF than in NF arteries. ALT-711, alone or in combination with TEMPOL, restored outward remodeling in HF arteries in association with AGEs reduction. TEMPOL alone had no effect. ALT-711, TEMPOL or the combination of the 2 drugs did not significantly affect endothelium-mediated relaxation in HF and NF arteries.In ZDF rats, diameter did not increase despite the increase in blood flow and endothelium-mediated relaxation was further decreased in HF arteries in association with AGEs accumulation and excessive oxidative stress. In both NF and HF arteries, endothelium-mediated relaxation was lower in ZDF than in LZ rats. ALT-711, TEMPOL or their combination did not improve remodeling (diameter equivalent in HF and NF arteries). In parallel, they did not reduce AGEs level and did not improve MMPs activity. Nevertheless, ALT-711 and TEMPOL partly improved endothelium-mediated relaxation through a reduction of oxidative stress and the association of ALT-711 and TEMPOL fully restored relaxation to the level found in LZ rats. CONCLUSIONS: ALT-711 did not improve outward remodeling in mature ZDF rats but it reduced oxidative stress and consequently improved endothelium-dependent relaxation. In mature LZ rats, ALT-711 improved outward remodeling and reduced AGEs level. Consequently, AGEs breaking is differently useful in ageing whether it is associated with diabetes or not.


Subject(s)
Aging/metabolism , Antioxidants/pharmacology , Blood Flow Velocity/physiology , Glycation End Products, Advanced/metabolism , Vascular Resistance/physiology , Vasodilation/physiology , Aging/drug effects , Animals , Blood Flow Velocity/drug effects , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Male , Rats , Rats, Zucker , Treatment Outcome , Vascular Resistance/drug effects , Vasodilation/drug effects
15.
FASEB J ; 28(5): 2062-72, 2014 May.
Article in English | MEDLINE | ID: mdl-24451386

ABSTRACT

Previous studies have shown that aldosterone, which activates the mineralocorticoid receptor (MR), promotes thrombosis in animal models. Our objective was to determine whether MR activation/expression in the vascular endothelium could modify thrombotic risk in vivo and to examine thrombin generation at the surface of aortic endothelial cells (HAECs). MR was conditionally overexpressed in vivo in vascular endothelial cells in mice (MR-EC mice) or stimulated with aldosterone in HAECs. Thrombosis after ferric chloride injury was delayed in MR-EC mice compared with controls as well as in wild-type FVB/NRj mice treated with aldosterone (60 µg/kg/d for 21 d). Thrombin generation in platelet-poor plasma did not differ between MR-EC mice and controls. In MR-EC mice, aortic endothelial cell protein C receptor (EPCR) expression was increased. Aldosterone (10(-8) M) attenuated thrombin generation at the surface of cultured HAECs, and this effect was associated with up-regulation of expression of EPCR, which promotes formation of activated protein C. Aldosterone increases EPCR expression via a transcriptional mechanism involving interaction of MR with the specificity protein 1 site. These findings demonstrate that MR activation acts on endothelial cells to protect against thrombosis in physiological conditions and that MR-mediated EPCR overexpression drives this antithrombotic property through enhancing protein C activation.


Subject(s)
Blood Coagulation Factors/metabolism , Protein C/metabolism , Receptors, Cell Surface/metabolism , Receptors, Mineralocorticoid/metabolism , Thrombosis/metabolism , Aldosterone/metabolism , Animals , Aorta/cytology , Aorta/pathology , Cells, Cultured , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Genes, Reporter , Genetic Vectors , Humans , Male , Mice , Mice, Transgenic , Plasmids/metabolism , RNA/metabolism , Thrombin/metabolism
16.
PLoS One ; 8(7): e68217, 2013.
Article in English | MEDLINE | ID: mdl-23874545

ABSTRACT

Endothelial dysfunction in resistance arteries alters end organ perfusion in type 2 diabetes. Superoxides and cyclooxygenase-2 (COX-2) derivatives have been shown separately to alter endothelium-mediated relaxation in aging and diabetes but their role in the alteration of vascular tone in old diabetic subjects is not clear, especially in resistance arteries. Consequently, we investigated the role of superoxide and COX-2-derivatives on endothelium-dependent relaxation in 3 and 12 month-old Zucker diabetic fatty (ZDF) and lean (LZ) rats. Mesenteric resistance arteries were isolated and vascular tone was investigated using wire-myography. Endothelium (acetylcholine)-dependent relaxation was lower in ZDF than in LZ rats (60 versus 84% maximal relaxation in young rats and 41 versus 69% in old rats). Blocking NO production with L-NAME was less efficient in old than in young rats. L-NAME had no effect in old ZDF rats although eNOS expression level in old ZDF rats was similar to that in old LZ rats. Superoxide level and NADPH-oxidase subunits (p67phox and gp91phox) expression level were greater in ZDF than in LZ rats and were further increased by aging in ZDF rats. In young ZDF rats reducing superoxide level with tempol restored acetylcholine-dependent relaxation to the level of LZ rats. In old ZDF rats tempol improved acetylcholine-dependent relaxation without increasing it to the level of LZ rats. COX-2 (immunolabelling and Western-blot) was present in arteries of ZDF rats and absent in LZ rats. In old ZDF rats arterial COX-2 level was higher than in young ZDF rats. COX-2 blockade with NS398 restored in part acetylcholine-dependent relaxation in arteries of old ZDF rats and the combination of tempol and NS398 fully restored relaxation in control (LZ rats) level. Accordingly, superoxide production and COX-2 derivatives together reduced endothelium-dependent relaxation in old ZDF rats whereas superoxides alone attenuated relaxation in young ZDF or old LZ rats.


Subject(s)
Cyclooxygenase 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Endothelium, Vascular/metabolism , Oxidative Stress , Prostaglandins/metabolism , Vasodilation/physiology , Acetylcholine/pharmacology , Animals , Blood Glucose , Blood Pressure , Body Weight , Cyclooxygenase 2 Inhibitors/pharmacology , Male , Phenylephrine/pharmacology , Rats , Reactive Oxygen Species/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects
17.
Hypertension ; 61(5): 1053-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23460285

ABSTRACT

Liddle syndrome, an inherited form of hypertension, is caused by gain-of-function mutations in the epithelial Na(+) channel (ENaC), the principal mediator of Na(+) reabsorption in the kidney. Accordingly, the disease pathology was ascribed to a primary renal mechanism. Whether this is the sole responsible mechanism, however, remains uncertain as dysregulation of ENaC in other tissues may also be involved. Previous work indicates that ENaC in the vascular endothelium is crucial for the regulation of cellular mechanics and thus vascular function. The hormone aldosterone has been shown to concomitantly increase ENaC surface expression and stiffness of the cell cortex in vascular endothelial cells. The latter entails a reduced release of the vasodilator nitric oxide, which eventually leads to an increase in vascular tone and blood pressure. Using atomic force microscopy, we have found a direct correlation between ENaC surface expression and the formation of cortical stiffness in endothelial cells. Stable knockdown of αENaC in endothelial cells evoked a reduced channel surface density and a lower cortical stiffness compared with the mock control. In turn, an increased αENaC expression induced an elevated cortical stiffness. More importantly, using ex vivo preparations from a mouse model for Liddle syndrome, we show that this disorder evokes enhanced ENaC expression and increased cortical stiffness in vascular endothelial cells in situ. We conclude that ENaC in the vascular endothelium determines cellular mechanics and hence might participate in the control of vascular function.


Subject(s)
Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Epithelial Sodium Channels/metabolism , Hypertension/physiopathology , Liddle Syndrome/physiopathology , Vascular Stiffness/physiology , Animals , Aorta/metabolism , Aorta/pathology , Cells, Cultured , Disease Models, Animal , Epithelial Sodium Channels/deficiency , Epithelial Sodium Channels/genetics , Humans , Hypertension/metabolism , Hypertension/pathology , In Vitro Techniques , Liddle Syndrome/metabolism , Liddle Syndrome/pathology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Microscopy, Atomic Force , Nitric Oxide/metabolism , RNA Interference/physiology
18.
PLoS One ; 8(2): e56981, 2013.
Article in English | MEDLINE | ID: mdl-23468899

ABSTRACT

BACKGROUND: Postnatal overfeeding (OF) in rodents induces a permanent moderate increase in body weight in adulthood. However, the repercussions of postnatal OF on cardiac gene expression, cardiac metabolism and nitro-oxidative stress are less well known. METHODOLOGY/PRINCIPAL FINDINGS: Immediately after birth, litters of C57BL/6 mice were either maintained at 10 (normal-fed group, NF), or reduced to 3 in order to induce OF. At weaning, mice of both groups received a standard diet. The cardiac gene expression profile was determined at weaning and cardiac metabolism and oxidative stress were assessed at 7 months. The cardiac expression of several genes, including members of the extracellular matrix and apelin pathway, was modified in juvenile OF mice. In adult mice, OF led to an increase in body weight (+30%) and to significant increases in plasma cholesterol, insulin and leptin levels. Myocardial oxidative stress, SOD and catalase activity and mRNA expression were increased in OF mice. In vivo, diastolic and systolic blood pressures were significantly higher and LV shortening and ejection fraction were decreased in OF mice. Ex vivo, after 30 min of ischemia, hearts isolated from OF mice showed lower functional recovery and larger infarct size (31% vs. 54%, p<0.05). Increases in collagen deposition and expression/activity of matrix-metalloproteinase-2 were observed in adult OF mouse hearts. Moreover, an increase in the expression of SOCS-3 and a decrease in STAT-3 phosphorylation were observed in ventricular tissues from OF mice. CONCLUSIONS/SIGNIFICANCE: Our study emphasizes that over-nutrition during the immediate postnatal period in mice leads to early changes in cardiac gene expression, which may permanently modify the heart's structural organization and metabolism and could contribute to a greater susceptibility to myocardial ischemia-reperfusion injury.


Subject(s)
Gene Expression , Myocardium/metabolism , Overnutrition , Animals , Blood Glucose , Body Composition , Body Weight , Disease Susceptibility , Female , Gene Expression Profiling , Gene Expression Regulation , Heart/physiology , Heart/physiopathology , Mice , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Nitrogen Species , Time Factors , Ventricular Remodeling
19.
Arterioscler Thromb Vasc Biol ; 33(2): 339-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23264443

ABSTRACT

OBJECTIVE: In resistance arteries, diameter adjustment in response to pressure changes depends on the vascular cytoskeleton integrity. Serum response factor (SRF) is a dispensable transcription factor for cellular growth, but its role remains unknown in resistance arteries. We hypothesized that SRF is required for appropriate microvascular contraction. METHODS AND RESULTS: We used mice in which SRF was specifically deleted in smooth muscle or endothelial cells, and their control. Myogenic tone and pharmacological contraction was determined in resistance arteries. mRNA and protein expression were assessed by quantitative real-time PCR (qRT-PCR) and Western blot. Actin polymerization was determined by confocal microscopy. Stress-activated channel activity was measured by patch clamp. Myogenic tone developing in response to pressure was dramatically decreased by SRF deletion (5.9±2.3%) compared with control (16.3±3.2%). This defect was accompanied by decreases in actin polymerization, filamin A, myosin light chain kinase and myosin light chain expression level, and stress-activated channel activity and sensitivity in response to pressure. Contractions induced by phenylephrine or U46619 were not modified, despite a higher sensitivity to p38 blockade; this highlights a compensatory pathway, allowing normal receptor-dependent contraction. CONCLUSIONS: This study shows for the first time that SRF has a major part to play in the control of local blood flow via its central role in pressure-induced myogenic tone in resistance arteries.


Subject(s)
Arterial Pressure , Muscle, Smooth, Vascular/metabolism , Serum Response Factor/metabolism , Tail/blood supply , Vascular Resistance , Vasodilation , Actins/metabolism , Animals , Arterial Pressure/drug effects , Arteries/metabolism , Blotting, Western , Calcium Signaling , Contractile Proteins/metabolism , Dose-Response Relationship, Drug , Filamins , Gene Expression Regulation , Male , Mechanotransduction, Cellular , Membrane Potentials , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Microscopy, Confocal , Muscle, Smooth, Vascular/drug effects , Myography , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Patch-Clamp Techniques , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Serum Response Factor/deficiency , Serum Response Factor/genetics , Time Factors , Vascular Resistance/drug effects , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilation/drug effects , Vasodilator Agents/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Vascul Pharmacol ; 57(5-6): 173-8, 2012.
Article in English | MEDLINE | ID: mdl-22484164

ABSTRACT

Shear stress due to blood flow is the most important force stimulating vascular endothelium. Acute stimulation of the endothelium by shear stress induces a vasodilatation mainly due to the release of nitric oxide (NO) among other relaxing agents. After a chronic increase in blood flow (shear stress), the endothelium triggers diameter enlargement, medial hypertrophy and improvement of arterial contractility and endothelium-mediated dilation. Shear stress-mediated outward remodeling requires an initial inflammatory response followed by the production of reactive oxygen species (ROS) and peroxinitrite anions, which activate MMPs and extracellular matrix digestion allowing diameter expansion. This outward remodeling occurs in collateral growth following occlusion of a large artery. In diabetes, an excessive ROS production is associated with the formation of advanced glycation end-products (AGEs) and the glycation of enzymes involved in vascular tone. The balance between inflammation, AGEs and ROS level determines the ability of resistance arteries to develop outward remodeling whereas AGEs and ROS contribute to decrease endothelium-mediated dilation in remodeled vessels. This review explores the interaction between ROS, AGEs and the endothelium in shear stress-mediated outward remodeling of resistance arteries in diabetes. Restoring or maintaining this remodeling is essential for an efficient blood flow in distal organs.


Subject(s)
Diabetes Mellitus/physiopathology , Oxidative Stress , Vascular Resistance/physiology , Animals , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Glycation End Products, Advanced/metabolism , Humans , Nitric Oxide/metabolism , Reactive Oxygen Species/metabolism , Regional Blood Flow/physiology , Shear Strength/physiology , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL