Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
2.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. ilus, tab, graf
Article in English | IBECS | ID: ibc-226364

ABSTRACT

Objective: Attention Deficit/Hyperactivity Disorder (ADHD) negatively affects social functioning; however, its neurological underpinnings remain unclear. Altered Default Mode Network (DMN) connectivity may contribute to social dysfunction in ADHD. We investigated whether DMN's dynamic functional connectivity (dFC) alterations were associated with social dysfunction in individuals with ADHD. Methods: Resting-state fMRI was used to examine DMN subsystems (dorsal medial prefrontal cortex (dMPFC), medial temporal lobe (MTL)) and the midline core in 40 male ADHD patients (7-10 years) and 45 healthy controls (HCs). Connectivity correlations with symptoms and demographic data were assessed. Group-based analyses compared rsFC between groups with two-sample t-tests and post-hoc analyses. Results: Social dysfunction in ADHD patients was related to reduced DMN connectivity, specifically in the MTL subsystem and the midline core. ADHD patients showed decreased dFC between parahippocampal cortex (PHC) and left superior frontal gyrus, and between ventral medial prefrontal cortex (vMPFC) and right middle frontal gyrus compared to HCs (MTL subsystem). Additionally, decreased dFC between posterior cingulate cortex (PCC), anterior medial prefrontal cortex (aMPFC), and right angular gyrus (midline core) was observed in ADHD patients relative to HCs. No abnormal connectivity was found within the dMPFC. Conclusion: Preliminary findings suggest that DMN connectional abnormalities may contribute to social dysfunction in ADHD, providing insights into the disorder's neurobiology and pathophysiology. (AU)


Subject(s)
Humans , Attention Deficit Disorder with Hyperactivity/psychology , Social Behavior , Social Skills , Prefrontal Cortex , Cerebrum/diagnostic imaging , Interviews as Topic
3.
Int J Clin Health Psychol ; 23(4): 100393, 2023.
Article in English | MEDLINE | ID: mdl-37829190

ABSTRACT

Objective: Attention Deficit/Hyperactivity Disorder (ADHD) negatively affects social functioning; however, its neurological underpinnings remain unclear. Altered Default Mode Network (DMN) connectivity may contribute to social dysfunction in ADHD. We investigated whether DMN's dynamic functional connectivity (dFC) alterations were associated with social dysfunction in individuals with ADHD. Methods: Resting-state fMRI was used to examine DMN subsystems (dorsal medial prefrontal cortex (dMPFC), medial temporal lobe (MTL)) and the midline core in 40 male ADHD patients (7-10 years) and 45 healthy controls (HCs). Connectivity correlations with symptoms and demographic data were assessed. Group-based analyses compared rsFC between groups with two-sample t-tests and post-hoc analyses. Results: Social dysfunction in ADHD patients was related to reduced DMN connectivity, specifically in the MTL subsystem and the midline core. ADHD patients showed decreased dFC between parahippocampal cortex (PHC) and left superior frontal gyrus, and between ventral medial prefrontal cortex (vMPFC) and right middle frontal gyrus compared to HCs (MTL subsystem). Additionally, decreased dFC between posterior cingulate cortex (PCC), anterior medial prefrontal cortex (aMPFC), and right angular gyrus (midline core) was observed in ADHD patients relative to HCs. No abnormal connectivity was found within the dMPFC. Conclusion: Preliminary findings suggest that DMN connectional abnormalities may contribute to social dysfunction in ADHD, providing insights into the disorder's neurobiology and pathophysiology.

4.
Front Hum Neurosci ; 17: 1219189, 2023.
Article in English | MEDLINE | ID: mdl-37635807

ABSTRACT

Objectives: Attention-deficit/hyperactivity disorder (ADHD) is one of the most widespread and highly heritable neurodevelopmental disorders affecting children worldwide. Although synaptosomal-associated protein 25 (SNAP-25) is a possible gene hypothesized to be associated with working memory deficits in ADHD, little is known about its specific impact on the hippocampus. The goal of the current study was to determine how variations in ADHD's SNAP-25 Mnll polymorphism (rs3746544) affect hippocampal functional connectivity (FC). Methods: A total of 88 boys between the ages of 7 and 10 years were recruited for the study, including 60 patients with ADHD and 28 healthy controls (HCs). Data from resting-state functional magnetic resonance imaging (rs-fMRI) and clinical information were acquired and assessed. Two single nucleotide polymorphisms (SNP) in the SNAP-25 gene were genotyped, according to which the study's findings separated ADHD patients into two groups: TT homozygotes (TT = 35) and G-allele carriers (TG = 25). Results: Based on the rs-fMRI data, the FC of the right hippocampus and left frontal gyrus was evaluated using group-based comparisons. The corresponding sensitivities and specificities were assessed. Following comparisons between the patient groups, different hippocampal FCs were identified. When compared to TT patients, children with TG had a lower FC between the right precuneus and the right hippocampus, and a higher FC between the right hippocampus and the left middle frontal gyrus. Conclusion: The fundamental neurological pathways connecting the SNAP-25 Mnll polymorphism with ADHD via the FC of the hippocampus were newly revealed in this study. As a result, the hippocampal FC may further serve as an imaging biomarker for ADHD.

5.
Front Neurosci ; 16: 890596, 2022.
Article in English | MEDLINE | ID: mdl-35712452

ABSTRACT

Anomalies in large-scale cognitive control networks impacting social attention abilities are hypothesized to be the cause of attention deficit hyperactivity disorder (ADHD). The precise nature of abnormal brain functional connectivity (FC) dynamics including other regions, on the other hand, is unknown. The concept that insular dynamic FC (dFC) among distinct brain regions is dysregulated in children with ADHD was evaluated using Insular subregions, and we studied how these dysregulations lead to social dysfunctioning. Data from 30 children with ADHD and 28 healthy controls (HCs) were evaluated using dynamic resting state functional magnetic resonance imaging (rs-fMRI). We evaluated the dFC within six subdivisions, namely both left and right dorsal anterior insula (dAI), ventral anterior insula (vAI), and posterior insula (PI). Using the insular sub-regions as seeds, we performed group comparison between the two groups. To do so, two sample t-tests were used, followed by post-hoc t-tests. Compared to the HCs, patients with ADHD exhibited decreased dFC values between right dAI and the left middle frontal gyrus, left postcentral gyrus and right of cerebellum crus, respectively. Results also showed a decreased dFC between left dAI and thalamus, left vAI and left precuneus and left PI with temporal pole. From the standpoint of the dynamic functional connectivity of insular subregions, our findings add to the growing body of evidence on brain dysfunction in ADHD. This research adds to our understanding of the neurocognitive mechanisms behind social functioning deficits in ADHD. Future ADHD research could benefit from merging the dFC approach with task-related fMRI and non-invasive brain stimulation, which could aid in the diagnosis and treatment of the disorder.

6.
Psychiatry Res Neuroimaging ; 304: 111149, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32738725

ABSTRACT

Notwithstanding being the object of a growing field of clinical research, the investigation of the dynamic resting-state functional connectivity alterations in psychiatric illnesses is still in its early days. Current research on major depressive disorder (MDD) and bipolar disorder (BD) has evidenced abnormal resting-state functional connectivity (rsFC), especially in regions subserving emotional processing and regulation such as the amygdala. However, dynamic changes in functional connectivity within the amygdalar subregions in distinguishing BD and MDD has not yet been fully understood. In this paper, we aim at analyzing the patterns characterizing dynamic FC (dFC) in the right amygdala to investigate the differences between similarly depressed BD and MDD. A number of 40 BD patients, 61 MDD patients and 63 healthy controls (HCs) underwent functional magnetic resonance imaging (fMRI) at rest. Using the right-amygdala as seed region, we compared the dFC within three subdivisions, namely, laterobasal (LB), centromedial (CM) and superficial (SF) between all the groups. To do so, one-way ANOVA followed by post-hoc t-tests were employed. Compared to HCs, patients with BD had a decreased dFC between right LB and the left postcentral gyrus as well as an increased dFC between right CM and the right cerebellum.Compared to BD patients, patients with MDD showed a decreased dFC between right CM and the cerebellum and an increased dFC between right LB and the left postcentral gyrus. These findings present initial evidence that abnormal patterns of the right-amygdalar subregions shared by BD and MDD supports the differential pathophysiology of these disorders.


Subject(s)
Amygdala/physiopathology , Bipolar Disorder/physiopathology , Depressive Disorder, Major/physiopathology , Adult , Amygdala/diagnostic imaging , Bipolar Disorder/diagnostic imaging , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Depressive Disorder, Major/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiopathology
7.
Psychiatry Res Neuroimaging ; 284: 53-60, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30684896

ABSTRACT

Despite the impressive advancements in the neuropathology of mood disorders, patients with bipolar disorder (BD) are often misdiagnosed on the initial presentation with major depressive disorder (MDD). With supporting evidence from neuroimaging studies, the abnormal functional connectivity (FC) of the hippocampus has been associated with various mood disorders, including BD and MDD. However, the features of the hippocampal FC underlying MDD and BD have not been directly compared. This study aims to investigate the hippocampal resting-state FC (rsFC) analyses to distinguish these two clinical conditions. Resting-state functional magnetic resonance imaging (fMRI) data was collected from a sample group of 30 patients with BD, 29 patients with MDD and 30 healthy controls (HCs). One-way ANOVA was employed to assess the potential differences of the hippocampus FC across all subjects. BD patients exhibited increased FC of the bilateral anterior/posterior hippocampus with lingual gyrus and inferior frontal gyrus (IFG) relative to patients MDD patients. In comparison with HCs, patients with BD and MDD had an increased FC between the right anterior hippocampus and lingual gyrus and a decreased FC between the right posterior hippocampus and right IFG. The results revealed a distinct hippocampal FC in MDD patients compared with that observed in BD patients. These findings may assist investigators in attempting to distinguish mood disorders by using fMRI data.


Subject(s)
Bipolar Disorder/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging/statistics & numerical data , Adult , Bipolar Disorder/physiopathology , Case-Control Studies , Depressive Disorder, Major/physiopathology , Female , Hippocampus/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Neuroimaging , Prefrontal Cortex/diagnostic imaging , Temporal Lobe/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...