Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pulm Med ; 22(1): 367, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167538

ABSTRACT

BACKGROUND: The study aimed to determine whether or notα7 nicotinic acetylcholine receptors (α7nAChR) induce anti-inflammatory effects directly in the lung or through the spleen pathway in a sterile model of lung injury by saline lavage. METHODS: Male Sprague Dawley rats were divided into seven groups; Sham, splenectomy (SPX), saline lavage (LAV), LAV treated with α7nAChR agonist nicotine (LAV + NIC), and LAV treated with NIC and a selective α7nAChR antagonist MLA (LAV+MLA+NIC), LAV and splenectomy (LAV+SPX), and LAV+SPX treated with nicotine (LAV+SPX+NIC). Tracheostomy and catheterization of the femoral artery were performed under deep anesthesia. Animals were subjected to volume-controlled ventilation and lung injury by 10 repeated saline lavages. Splenectomy was achieved one week before the induction of lung injury. The recovery phase lasted for 3 h, and drugs were injected 1 h after the last lavage. RESULTS: Mean arterial blood pressure (MBP), heart rate (HR), PaO2, PaO2/FiO2 ratio, and pH decreased, whereas, maximal inspiratory (MIP) and expiratory (MEP) pressures, and PaCO2 increased 1 h after the saline lavage. Nicotine corrected entirely all the above parameters in the LAV + NIC group. MLA or SPX prevented the effects of nicotine on the above parameters, except that MLA had no extra effect on MIP or MEP. In addition, nicotine improved lung compliance in the LAV + NIC and LAV + SPX + NIC groups, though it was inhibited by MLA in the LAV + MLA + NIC group. The increases of plasma and lung tissue malondialdehyde (MDA) in the LAV group were diminished by nicotine, whereas, MLA and SPX prevented these reductions. Besides, nicotine could reduce plasma MDA in the LAV + SPX + NIC group. Total BAL cell count, protein BAL/protein plasma ratio, and lung histological scores were attenuated by nicotine in the LAV + NIC group, whereas, MLA reversed the mentioned alterations in the LAV + MLA + NIC group. However, splenectomy could not stop the decreasing effect of nicotine on the total BAL cell in the LAV + SPX + NIC group. CONCLUSIONS: In this study, we indicated that α7nAChR and spleen play roles in cholinergic anti-inflammatory pathways in saline lavage-induced lung injury. However, our results are in favor of at least some direct effects of α 7nAChR in the lung.


Subject(s)
Lung Injury , Receptors, Nicotinic , Animals , Anti-Inflammatory Agents , Male , Malondialdehyde , Nicotine/pharmacology , Rats , Rats, Sprague-Dawley , Spleen , Therapeutic Irrigation , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/metabolism
3.
Int Urol Nephrol ; 51(11): 2083-2089, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31407138

ABSTRACT

PURPOSE: To determine the role of remote perconditioning (RPeC) on renal function and histology in an animal model of unilateral renal ischemia and reperfusion (IR) injury. METHODS: Rats were subjected to 60 min unilateral renal ischemia. RPeC protocol was the application of four cycles of 5 min IR of left femoral artery during renal ischemia. Assessments of histological changes and renal function were made 24 h, 1 week, or 3 weeks later. 99mTc-DMSA scan was performed using a small-animals SPECT system. RESULTS: 24-h reperfusion decreased the 99mTc-DMSA uptake in the left kidney compared to the intact kidney of control animals. RPeC group has higher uptake compared to the IR group. After 1 week and 3 weeks, uptakes were gradually increased in both groups and no differences were observed. Severe morphological changes in the ischemic kidneys of both groups were observed after 24 h which attenuated after 1 week and 3 weeks. Moreover, no differences in creatinine and BUN levels between IR-treated and intact animals were observed. CONCLUSION: These data suggest that RPeC exerts a partially transient improvement in the renal function in the first day after reperfusion. However, long-term follow-up study showed no beneficial effects of RPeC. Moreover, noninvasive 99mTc-DMSA scan revealed a suitable tool in the follow-up evaluation of recovery process in the unilateral renal IR injury models.


Subject(s)
Ischemic Preconditioning , Kidney/blood supply , Reperfusion Injury/prevention & control , Animals , Disease Models, Animal , Ischemic Preconditioning/methods , Longitudinal Studies , Male , Radionuclide Imaging , Rats , Rats, Wistar , Reperfusion Injury/diagnostic imaging
4.
Iran J Basic Med Sci ; 22(12): 1440-1444, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32133062

ABSTRACT

OBJECTIVES: In this study, the neutralizing abilities of the equine and the recently introduced camelid antivenoms on the hemodynamic parameters (inotropism, chronotropism, and arrhythmogenicity) were assessed following envenomation by Hemiscorpius lepturus venom in rats. MATERIALS AND METHODS: At first, the electrophoretic profiles of both products were obtained by using the SDS-PAGE method (12.5%) and stained with Coomassie blue and silver nitrate. Secondly, different doses of the camelid antivenom (10, 50, and 100 µl) were given intravenously in 10 min before venom injection (400 µg/rat). The neutralizing potencies of camelid and equine antivenoms were measured by preincubation (100 µl) with H. lepturus venom for 30 min at room temperature. Finally, equal amounts of the antivenoms were injected intravenously to observe the hemodynamic changes. RESULTS: Based on the electrophoretic profile, it was evident that undesired proteins significantly decreased in equine antivenom, owing to impurities. Pretreatment with the camelid antivenom (100 µl), neutralized the elevation of the mean arterial pressure evoked with scorpion venom injection (88.15±4.56 versus 10.2±1.23 percent at the 8th min). The Incubation of the venom and the camelid antivenom counteracted the hemodynamic changes, but the equine product had no effect. The intravascular injection of the equine antivenom transiently increased the mean arterial pressure as compared to the control (108.67±8.63 mmHg versus 52.67±1.93 mmHg at the 10th min). CONCLUSION: The most obvious finding emerging from this study was that the camelid antivenom neutralized the hemodynamic changes in rats significantly, but in comparison, the equine antivenom had just a minor ability.

5.
J Arthropod Borne Dis ; 12(1): 31-40, 2018 Mar.
Article in English | MEDLINE | ID: mdl-30018992

ABSTRACT

BACKGROUND: We investigated the hemodynamic changes (Inotropic, chronotropic and arrhythmogenic) in intravenously envenomed anesthetized rats with Hemiscorpius lepturus venom. The neutralizing potencies of different drugs and commercial antivenom were assessed simultaneously. METHODS: Different doses of the crude venom (100, 200 and 400µg/rat) were injected during five minutes via the femoral vein and cardiovascular changes were recorded in rats in Razi Institute Corporation, Karaj, Iran in 2017. The drugs (Atropine, lidocaine, propranolol and prazosin) were injected before the venom for determination of the counteracting effects. Different volumes (100, 500 and 1000µl) of the antivenom were pre envenomed to neutralize cardiovascular changes. RESULTS: Temporary hypertension and bradycardia with no arrhythmogenic effects were depicted within twenty minutes. There was a difference in arterial pressure between the venom (400µg/rat) and the vehicle at 8 minutes (114.68±5.1mmHg versus 70.2±4.3mmHg). Elevation of the mean arterial pressure was inhibited by propranolol (2 mg/kg) and neutralized by prazosin (1mg/kg) while lidocaine (4mg/kg) and atropine (1mg/kg) had no effects. Premedication with Iranian commercial antivenom (1000µl) produced surprisingly temporary hypertension compared to the vehicle (140.84±4.5 versus 84.3±3.2). It had no neutralizing properties on blood pressure variation before the venom injection. Volume-expanded hypertension phenomenon was ruled out in a parallel study. CONCLUSION: This venom has vasoconstrictive effects in rats probably due to the presence of norepinephrine like materials in its content or liberated from adrenal gland inhibited by prazosin premedication. The neutralizing effects of antivenom on venom-induced hypertension are questionable.

6.
Iran J Basic Med Sci ; 21(12): 1221-1225, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30627364

ABSTRACT

OBJECTIVES: Hemiscorpius lepturus is one of the dangerous scorpions of Iran leading to acute kidney injury (AKI) especially in infants. The purpose of this animal study was to compare the serological, pathological and scintigraphic data to quickly predict the occurrence of this disorder. MATERIALS AND METHODS: In two groups of animals, each contained five rats, H. lepturus venom (1200 µg/Kg) were injected intravenously via the tail vein. At three hours and one week later, 99m Tc-DMSA (3 mCi) was intravenously injected and renal scintigraphy was performed after an hour. Moreover, plasma levels of creatinine, sodium, potassium, and blood urea nitrogen (BUN) were measured. At the end of the study, renal tissues were excised and prepared to perform pathological evaluation after Hematoxylin and Eosin staining. RESULTS: All serological indices were remained unchanged compared to control. A large number of glomerular fibrin thrombi with entrapped red blood cells and simplified tubular epithelium in dilated and ectatic tubules were observed in high power field (×100) four hours after envenomation, which reduced significantly one week later. In our scintigraphic study, there was a statistically significant difference (P<0.05) in kidney count rate per pixels (CRPP) in both acute and chronic phases compared to the sham group that received normal saline (0.84±0.05 and 1.36±0.07 versus 1.7±0.05). CONCLUSION: The results of this preliminary animal study suggest renal scintigraphy is a non-invasive method to predict the occurrence of the AKI in H. lepturus envenomation. It leads the way for more investigation to counteract the renal failure induced by this venom.

7.
Mol Cell Biochem ; 434(1-2): 163-169, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28466457

ABSTRACT

Biochemical and histological assays are currently used for the diagnosis and characterization of kidney injury. The purpose of this study was to compare technetium-99m-labeled dimercaptosuccinic acid (99mTc-DMSA) renal scintigraphy, as a non-invasive method, with common biochemical and histopathological methods in two animal models of acute kidney injury. Nephrotoxicity was induced either by gentamicin (100 mg/kg/day for one week) or unilateral ureteral ligation (UUO). Renal scintigraphy was performed 1 h after intravenous injection of 99mTc-DMSA (3 mCi). Furthermore, plasma levels of blood urea nitrogen (BUN), creatinine, sodium, and potassium were determined using an autoanalyzer. At the end of experiments, kidneys were excised for the measurement of activity uptake (mCi/gr) using a dose calibrator as well as histopathological examinations with hematoxylin and eosin (H&E) staining. There was a significant decrease in 99mTc-DMSA uptake in both gentamicin (P value = 0.049) and UUO (P value = 0.034) groups, and it was more significant in the former. The levels of BUN and creatinine increased in both gentamicin and UUO groups, while the levels of sodium and potassium remained unchanged. Furthermore, a strong correlation was found between DMSA uptake and histopathological findings. Scintigraphy with 99mTc-DMSA is capable of detection of kidney injury in both gentamicin and UUO groups. Moreover, a significant correlation was found between scintigraphy parameters and histopathological findings. This suggests 99mTc-DMSA as a non-invasive method for the evaluation of kidney injury induced by drugs or anatomical disorders.


Subject(s)
Acute Kidney Injury/diagnostic imaging , Models, Animal , Radionuclide Imaging , Technetium Tc 99m Dimercaptosuccinic Acid/administration & dosage , Acute Kidney Injury/pathology , Animals , Rats , Rats, Sprague-Dawley , Tomography, Emission-Computed, Single-Photon
8.
Ren Fail ; 38(9): 1503-1515, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27484785

ABSTRACT

PURPOSE: Acute kidney injury (AKI) induces acute lung injury (ALI) through releasing injurious mediators or impairing clearance of systemic factors. To determine the links between AKI and ALI, pulmonary and blood variables were evaluated following induction of AKI via different experimental models of bilateral renal ischemia/reperfusion (BIR: renal ischemia with uremia), unilateral renal ischemia/reperfusion (UIR: renal ischemia without uremia), bilateral nephrectomy (BNX: uremia without renal ischemia), and unilateral nephrectomy (UNX: without uremia and renal ischemia). METHODS: Ninety male Sprague-Dawley rats were divided into six groups. Animals had 1-h bilateral or 2-h unilateral renal ischemia followed by 24-h reperfusion in the BIR and UIR groups, respectively, and 24-h period following bilateral or unilateral nephrectomy in the BNX and UNX groups, respectively. There were also sham and control groups with and without sham-operation, respectively. RESULTS: Plasma malondialdehyde and nitric oxide were elevated by BIR more than UIR, but not changed by UNX and BNX. UIR slightly increased plasma creatinine, whereas BIR and BNX largely increased plasma creatinine, urea, K+ and osmolality and decreased arterial HCO3-, pH, and CO2. UNX and UIR did not affect lung, but BIR and BNX induced ALI with equal capillary leak and macrophages infiltration. However, there were more prominent lung edema and vascular congestion following BNX and more severe neutrophils infiltration and PaO2/FiO2 reduction following BIR. CONCLUSION: Acutely accumulated systemic mediators following renal failure in the absence of kidneys vary from those due to combined renal failure with ischemic-reperfused kidneys and consequently they induce ALI with distinct characteristics.


Subject(s)
Acute Lung Injury/etiology , Creatinine/blood , Malondialdehyde/blood , Nephrectomy/adverse effects , Reperfusion Injury/complications , Acute Kidney Injury/complications , Acute Kidney Injury/diagnosis , Acute Kidney Injury/metabolism , Acute Lung Injury/diagnosis , Acute Lung Injury/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Disease Models, Animal , Kidney/diagnostic imaging , Kidney Function Tests , Lung/diagnostic imaging , Male , Rats , Rats, Sprague-Dawley , Reperfusion Injury/diagnosis , Reperfusion Injury/metabolism
9.
Can J Physiol Pharmacol ; 94(5): 477-87, 2016 May.
Article in English | MEDLINE | ID: mdl-26854976

ABSTRACT

Acute kidney injury is usually associated with distant organ dysfunction. The roles of inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) in this phenomenon were investigated following 2 h unilateral renal ischemia and 24 h reperfusion. There were 3 groups of rats subjected to either unilateral ischemia/reperfusion (UIR group), unilateral nephrectomy (UNX group), or sham operation. Two further groups were given α-tocopherol and aminoguanidine with UIR (treated-UIR group) and UNX (treated-UNX group). Plasma nitrite/nitrate and malondialdehyde were elevated only in the UIR group. Creatinine clearance and blood flow increased in non-ischemic kidney of the UIR, but not to the same extent as remnant kidney of the UNX group, while they had equal compensatory rises in absolute Na(+) and K(+) excretion and urine flow. Non-ischemic kidney of the treated-UIR group, but not remnant kidney of the treated-UNX group, showed more elevation in blood flow, whereas both kidneys had reductions in absolute Na(+) excretion and urine flow. Respiratory functional variable were not different between all groups. Therefore, 2 h unilateral renal ischemia and 24 h reperfusion did not affect lung but had distant effects on contralateral kidney partly mediated by ROS and NO-derived from iNOS to dampen compensatory increases in renal hemodynamics and to decrease tubular reabsorption.


Subject(s)
Acute Kidney Injury/physiopathology , Disease Models, Animal , Kidney/physiopathology , Lung/physiopathology , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Animals , Antioxidants/therapeutic use , Enzyme Inhibitors/therapeutic use , Guanidines/therapeutic use , Kidney/blood supply , Kidney/drug effects , Kidney/metabolism , Lung/drug effects , Lung/metabolism , Male , Malondialdehyde/blood , Nephrectomy/adverse effects , Nitrates/blood , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitrites/blood , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Reactive Oxygen Species/antagonists & inhibitors , Renal Reabsorption/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/physiopathology , Respiration/drug effects , Urination Disorders/etiology , Urination Disorders/prevention & control , alpha-Tocopherol/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...