Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome ; 66(8): 224-234, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37156012

ABSTRACT

H4K20me1 (histone H4 monomethylated at lysine 20) generally has a broad distribution along genes and has been reported to be associated with expressed and repressed genes. In contrast, H3K4me3 (histone H3 trimethylated at lysine 4) is positioned as a narrow peak at the 5' end of most expressed genes in vertebrate cells. A small population of genes involved in cell identity has H3K4me3 distributed throughout the gene body. In this report, we show that H4K20me1 is associated with expressed genes in estrogen receptor-positive breast cancer MCF7 cells and erythroleukemic K562 cells. Further, we identified the genes with the broadest H4K20me1 domains in these two cell types. The broad H4K20me1 domain marked gene bodies of expressed genes, but not the promoter or enhancer regions. The most significant GO term (biological processes) of these genes was cytoplasmic translation. There was little overlap between the genes marked with the broad H4K20me1 domain and those marked with H3K4me3. H4K20me1 and H3K79me2 distributions along expressed gene bodies were similar, suggesting a relationship between the enzymes catalyzing these histone modifications.


Subject(s)
Histones , Lysine , Histones/genetics , Histones/metabolism , Lysine/metabolism
2.
Cells ; 11(18)2022 09 10.
Article in English | MEDLINE | ID: mdl-36139405

ABSTRACT

A subset of expressed genes is associated with a broad H3K4me3 (histone H3 trimethylated at lysine 4) domain that extends throughout the gene body. Genes marked in this way in normal cells are involved in cell-identity and tumor-suppressor activities, whereas in cancer cells, genes driving the cancer phenotype (oncogenes) have this feature. Other histone modifications associated with expressed genes that display a broad domain have been less studied. Here, we identified genes with the broadest H3K79me2 (histone H3 dimethylated at lysine 79) domain in human leukemic cell lines representing different forms of leukemia. Taking a bioinformatic approach, we provide evidence that genes with the broadest H3K79me2 domain have known roles in leukemia (e.g., JMJD1C). In the mixed-lineage leukemia cell line MOLM-13, the HOXA9 gene is in a 100 kb broad H3K79me2 domain with other HOXA protein-coding and oncogenic long non-coding RNA genes. The genes in this domain contribute to leukemia. This broad H3K79me2 domain has an unstable chromatin structure, as was evident by enhanced chromatin accessibility throughout. Together, we provide evidence that identification of genes with the broadest H3K79me2 domain will aid in generating a panel of genes in the diagnosis and therapeutic treatment of leukemia in the future.


Subject(s)
Leukemia , RNA, Long Noncoding , Cell Line , Chromatin , Computational Biology , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Leukemia/genetics , Lysine/metabolism , Oxidoreductases, N-Demethylating/genetics , Oxidoreductases, N-Demethylating/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...