Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 6: 1107-15, 2015.
Article in English | MEDLINE | ID: mdl-26171287

ABSTRACT

We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be -5.93 and -3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10(-6) and 2.1 × 10(-6) cm(2)·V(-1)·s(-1) was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10(-6) cm(2)·V(-1)·s(-1) and a hole mobility of 1.4 × 10(-4) cm(2)·V(-1)·s(-1). The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement.

2.
Faraday Discuss ; 170: 93-107, 2014.
Article in English | MEDLINE | ID: mdl-25408948

ABSTRACT

The copper iodide complexes are known for their large variety of coordination geometries. Such diversity, while making it difficult to predict the final structure, permits the preparation of a great number of copper iodide complexes based on the same ligand. The target of the research was that of thoroughly exploring the chemistry of CuI and the ligand diphenyl-2-pyridyl phosphine (PN) by varying the stoichiometric ratio and/or the aggregation state. Six different compounds have been identified: [Cu4I4(PN)2], [Cu4I4(PN)2·(CH2Cl2)0.5], [CuI(PN)0.5]∞, [CuI(PN)3] whose structures have been determined during this study, CuI(PN)2 which was characterized by powder diffraction and [Cu2I2(PN)3] which has been already reported. The preparation routes are also different: synthesis in solution yielded [Cu4I4(PN)2·(CH2Cl2)0.5] and [CuI(PN)3] while [CuI(PN)0.5]∞ and CuI(PN)2 were obtained only via solid state reactions. These two latter examples confirmed that mechanochemistry is a valid route to explore the landscape of the possible structures of CuI derivatives. Crystallization by traditional solution procedures failed to give the desired crystal, so structure determination of the new compounds was tackled in two ways: by attempting crystal growth via solvothermal synthesis and by resolving the structure from X-ray powder diffraction data with "direct space" methods. What is more the photophysical properties of the complexes that could be obtained as sufficiently pure powders have also been investigated and are reported herein.

3.
Dalton Trans ; 43(25): 9448-55, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24821388

ABSTRACT

Organo-copper(i) halide complexes with a Cu4I4 cubane core and cyclic amines as ligands have been synthesized and their crystal structures have been defined. Their solid state photophysical properties have been measured and correlated with the crystal structure and packing. A unique and remarkably high luminescence quantum yield (76%) has been measured for one of the complexes having the cubane clusters arranged in a columnar structure and held together by N-HI hydrogen bonds. This high luminescence quantum yield is correlated with a slow radiationless deactivation rate of the excited state and suggests a rather strong enhancement of the cubane core rigidity bestowed by the hydrogen bond pattern. Some preliminary thin film deposition experiments show that these compounds could be considered to be good candidates for applications in electroluminescent devices because of their bright luminescence, low cost and relatively easy synthesis processes.


Subject(s)
Amines/chemistry , Copper/chemistry , Iodides/chemistry , Luminescence , Organometallic Compounds/chemistry , Quantum Theory , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Structure
4.
Chem Commun (Camb) ; 48(47): 5817-9, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22498934

ABSTRACT

By using a tridentate N^C^N-coordinating ligand, the luminescence of a cyclometallated Pt(II) complex can be shifted into the blue region, without the problematic drop-off in quantum yield observed for bidentate analogues. The combination of blue-shifted monomer and excimer allows white-emitting OLEDs with high colour rendering index to be produced.

5.
Inorg Chem ; 51(6): 3813-26, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22400487

ABSTRACT

A family of complexes (1a-3a and 1b-3b) was prepared, having the structure Ir(N^C^N)(N^C)Cl. Here, N^C(∧)N represents a terdentate, cyclometallating ligand derived from 1,3-di(2-pyridyl)benzene incorporating CH(3) (1a,b), F (2a,b), or CF(3) (3a,b) substituents at the 4 and 6 positions of the benzene ring, and N^C is 2-phenylpyridine (series a) or 2-(2,4-difluorophenyl)pyridine (series b). The complexes are formed using a stepwise procedure that relies on the initial introduction of the terdentate ligand to form a dichloro-bridged iridium dimer, followed by cleavage with the N^C ligand. (1)H NMR spectroscopy reveals that the isomer that is exclusively formed in each case is that in which the pyridyl ring of the N^C ligand is trans to the cyclometallating aryl ring of the N^C^N ligand. This conclusion is unequivocally confirmed by X-ray diffraction analysis for two of the complexes (1b and 3a). All of the complexes are highly luminescent in degassed solution at room temperature, emitting in the green (1a,b), blue-green (2a,b), and orange-red (3a,b) regions. The bidentate ligand offers independent fine-tuning of the emission energy: for each pair, the "b" complex is blue-shifted relative to the analogous "a" complex. These trends in the excited-state energies are rationalized in terms of the relative magnitudes of the effects of the substituents on the highest occupied and lowest unoccupied orbitals, convincingly supported by time-dependent density functional theory (TD-DFT) calculations. Luminescence quantum yields are high, up to 0.7 in solution and close to unity in a PMMA matrix for the green-emitting complexes. Organic light emitting devices (OLEDs) employing this family of complexes as phosphorescent emitters have been prepared. They display high efficiencies, at least comparable, and in some cases superior, to similar devices using the well-known tris-bidentate complexes such as fac-Ir(ppy)(3). The combination of terdentate and bidentate ligands is seen to offer a versatile approach to tuning of the photophysical properties of iridium-based emitters for such applications.

6.
Chem Commun (Camb) ; 48(26): 3182-4, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22349220

ABSTRACT

[PtL(6)X] {X = Cl or NCS and L(6) = 5-mesityl-1,3-di(2-pyridyl)-benzene} display similar luminescence in solution but, in the solid state, the packing of the molecules is different, with short PtPt interactions for X = NCS, leading to a red-shifted emission band. The effect has been used to generate OLEDs that emit squarely in the NIR region (855 nm).

7.
Phys Chem Chem Phys ; 7(21): 3738-43, 2005 Nov 07.
Article in English | MEDLINE | ID: mdl-16358023

ABSTRACT

A series of triphenylamine (TPA) based compounds is investigated by means of density functional theory and cyclic voltammetry. Using the Nicholson's formalism, the measured deltaE(p) are correlated with B3LYP/6-31G* calculated reorganisation energies (lambda), elucidating the trend followed by the electron transfer rate of these compounds. Besides the direct dependency upon the dimension of the cationic fragment contributing to the hole stabilisation, the lambdas are tuned by the symmetry local to the TPA units, as evidenced by the structural relaxation of the cations. MDTAB shows the interesting combination of low ionisation potential (IP) and low lambda. This can make this compound interesting for practical applications in organic light emitting diode (OLEDs) devices, due to the direct correlation of the IP and lambda with the hole transfer efficiency to the anode, along with the hole mobility.


Subject(s)
Aniline Compounds/chemistry , Aniline Compounds/radiation effects , Electrochemistry/methods , Models, Chemical , Models, Molecular , Photochemistry/methods , Aniline Compounds/analysis , Computer Simulation , Electric Impedance , Electron Transport , Light
SELECTION OF CITATIONS
SEARCH DETAIL