Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(20): 13714-13718, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38723156

ABSTRACT

We report the magnetic behavior of the hybrid perovskites [Gua]Mn1-xFe2x/3□x/3(HCOO)3 (0 ≤ x ≤ 0.88), showing that vacancy ordering drives bulk ferrimagnetism for x > 0.6. The behavior is rationalized in terms of a simple microscopic model of percolation-induced ferrimagnetism. Monte Carlo simulations driven by this model reproduce the experimental dependence of magnetic susceptibility on x and show that, at intermediate compositions, domains of short-range vacancy order lead to the emergence of local magnetization. Our results open up a new avenue for the design of multiferroic hybrid perovskites.

2.
J Chem Phys ; 160(8)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38421068

ABSTRACT

Amorphous ice phases are key constituents of water's complex structural landscape. This study investigates the polyamorphic nature of water, focusing on the complexities within low-density amorphous ice (LDA), high-density amorphous ice, and the recently discovered medium-density amorphous ice (MDA). We use rotationally invariant, high-dimensional order parameters to capture a wide spectrum of local symmetries for the characterization of local oxygen environments. We train a neural network to classify these local environments and investigate the distinctiveness of MDA within the structural landscape of amorphous ice. Our results highlight the difficulty in accurately differentiating MDA from LDA due to structural similarities. Beyond water, our methodology can be applied to investigate the structural properties and phases of disordered materials.

3.
Chem Commun (Camb) ; 59(76): 11405-11408, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37668310

ABSTRACT

Zeolitic imidazolate frameworks are widely thought of as being analogous to inorganic AB2 phases. We test the validity of this assumption by comparing simplified and fully atomistic machine-learning models for local environments in ZIFs. Our work addresses the central question to what extent chemical information can be "coarse-grained" in hybrid framework materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...