Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
2.
Comput Methods Programs Biomed ; 241: 107746, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660550

ABSTRACT

BACKGROUND AND OBJECTIVE: Obstructive airway diseases, including asthma and Chronic Obstructive Pulmonary Disease (COPD), are two of the most common chronic respiratory health problems. Both of these conditions require health professional expertise in making a diagnosis. Hence, this process is time intensive for healthcare providers and the diagnostic quality is subject to intra- and inter- operator variability. In this study we investigate the role of automated detection of obstructive airway diseases to reduce cost and improve diagnostic quality. METHODS: We investigated the existing body of evidence and applied Preferred Reporting Items for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to search records in IEEE, Google scholar, and PubMed databases. We identified 65 papers that were published from 2013 to 2022 and these papers cover 67 different studies. The review process was structured according to the medical data that was used for disease detection. We identified six main categories, namely air flow, genetic, imaging, signals, and miscellaneous. For each of these categories, we report both disease detection methods and their performance. RESULTS: We found that medical imaging was used in 14 of the reviewed studies as data for automated obstructive airway disease detection. Genetics and physiological signals were used in 13 studies. Medical records and air flow were used in 9 and 7 studies, respectively. Most papers were published in 2020 and we found three times more work on Machine Learning (ML) when compared to Deep Learning (DL). Statistical analysis shows that DL techniques achieve higher Accuracy (ACC) when compared to ML. Convolutional Neural Network (CNN) is the most common DL classifier and Support Vector Machine (SVM) is the most widely used ML classifier. During our review, we discovered only two publicly available asthma and COPD datasets. Most studies used private clinical datasets, so data size and data composition are inconsistent. CONCLUSIONS: Our review results indicate that Artificial Intelligence (AI) can improve both decision quality and efficiency of health professionals during COPD and asthma diagnosis. However, we found several limitations in this review, such as a lack of dataset consistency, a limited dataset and remote monitoring was not sufficiently explored. We appeal to society to accept and trust computer aided airflow obstructive diseases diagnosis and we encourage health professionals to work closely with AI scientists to promote automated detection in clinical practice and hospital settings.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Humans , Artificial Intelligence , Respiratory Physiological Phenomena , Pulmonary Disease, Chronic Obstructive/diagnosis , Asthma/diagnosis , Databases, Factual
3.
Article in English | MEDLINE | ID: mdl-36982048

ABSTRACT

Speech emotion recognition is an important research topic that can help to maintain and improve public health and contribute towards the ongoing progress of healthcare technology. There have been several advancements in the field of speech emotion recognition systems including the use of deep learning models and new acoustic and temporal features. This paper proposes a self-attention-based deep learning model that was created by combining a two-dimensional Convolutional Neural Network (CNN) and a long short-term memory (LSTM) network. This research builds on the existing literature to identify the best-performing features for this task with extensive experiments on different combinations of spectral and rhythmic information. Mel Frequency Cepstral Coefficients (MFCCs) emerged as the best performing features for this task. The experiments were performed on a customised dataset that was developed as a combination of RAVDESS, SAVEE, and TESS datasets. Eight states of emotions (happy, sad, angry, surprise, disgust, calm, fearful, and neutral) were detected. The proposed attention-based deep learning model achieved an average test accuracy rate of 90%, which is a substantial improvement over established models. Hence, this emotion detection model has the potential to improve automated mental health monitoring.


Subject(s)
Emotions , Speech , Anger , Fear , Happiness
4.
Diagnostics (Basel) ; 13(2)2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36673036

ABSTRACT

Dental caries is the most frequent dental health issue in the general population. Dental caries can result in extreme pain or infections, lowering people's quality of life. Applying machine learning models to automatically identify dental caries can lead to earlier treatment. However, physicians frequently find the model results unsatisfactory due to a lack of explainability. Our study attempts to address this issue with an explainable deep learning model for detecting dental caries. We tested three prominent pre-trained models, EfficientNet-B0, DenseNet-121, and ResNet-50, to determine which is best for the caries detection task. These models take panoramic images as the input, producing a caries-non-caries classification result and a heat map, which visualizes areas of interest on the tooth. The model performance was evaluated using whole panoramic images of 562 subjects. All three models produced remarkably similar results. However, the ResNet-50 model exhibited a slightly better performance when compared to EfficientNet-B0 and DenseNet-121. This model obtained an accuracy of 92.00%, a sensitivity of 87.33%, and an F1-score of 91.61%. Visual inspection showed us that the heat maps were also located in the areas with caries. The proposed explainable deep learning model diagnosed dental caries with high accuracy and reliability. The heat maps help to explain the classification results by indicating a region of suspected caries on the teeth. Dentists could use these heat maps to validate the classification results and reduce misclassification.

5.
Comput Methods Programs Biomed ; 230: 107320, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36608429

ABSTRACT

BACKGROUND AND OBJECTIVE: Celiac Disease (CD) is characterized by gluten intolerance in genetically predisposed individuals. High disease prevalence, absence of a cure, and low diagnosis rates make this disease a public health problem. The diagnosis of CD predominantly relies on recognizing characteristic mucosal alterations of the small intestine, such as villous atrophy, crypt hyperplasia, and intraepithelial lymphocytosis. However, these changes are not entirely specific to CD and overlap with Non-Celiac Duodenitis (NCD) due to various etiologies. We investigated whether Artificial Intelligence (AI) models could assist in distinguishing normal, CD, and NCD (and unaffected individuals) based on the characteristics of small intestinal lamina propria (LP). METHODS: Our method was developed using a dataset comprising high magnification biopsy images of the duodenal LP compartment of CD patients with different clinical stages of CD, those with NCD, and individuals lacking an intestinal inflammatory disorder (controls). A pre-processing step was used to standardize and enhance the acquired images. RESULTS: For the normal controls versus CD use case, a Support Vector Machine (SVM) achieved an Accuracy (ACC) of 98.53%. For a second use case, we investigated the ability of the classification algorithm to differentiate between normal controls and NCD. In this use case, the SVM algorithm with linear kernel outperformed all the tested classifiers by achieving 98.55% ACC. CONCLUSIONS: To the best of our knowledge, this is the first study that documents automated differentiation between normal, NCD, and CD biopsy images. These findings are a stepping stone toward automated biopsy image analysis that can significantly benefit patients and healthcare providers.


Subject(s)
Celiac Disease , Duodenitis , Noncommunicable Diseases , Humans , Celiac Disease/diagnosis , Duodenitis/diagnostic imaging , Duodenitis/pathology , Artificial Intelligence , Biopsy , Intestinal Mucosa/diagnostic imaging
6.
Diagnostics (Basel) ; 12(10)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36292199

ABSTRACT

BACKGROUND: Sleep stage classification is a crucial process for the diagnosis of sleep or sleep-related diseases. Currently, this process is based on manual electroencephalogram (EEG) analysis, which is resource-intensive and error-prone. Various machine learning models have been recommended to standardize and automate the analysis process to address these problems. MATERIALS AND METHODS: The well-known cyclic alternating pattern (CAP) sleep dataset is used to train and test an L-tetrolet pattern-based sleep stage classification model in this research. By using this dataset, the following three cases are created, and they are: Insomnia, Normal, and Fused cases. For each of these cases, the machine learning model is tasked with identifying six sleep stages. The model is structured in terms of feature generation, feature selection, and classification. Feature generation is established with a new L-tetrolet (Tetris letter) function and multiple pooling decomposition for level creation. We fuse ReliefF and iterative neighborhood component analysis (INCA) feature selection using a threshold value. The hybrid and iterative feature selectors are named threshold selection-based ReliefF and INCA (TSRFINCA). The selected features are classified using a cubic support vector machine. RESULTS: The presented L-tetrolet pattern and TSRFINCA-based sleep stage classification model yield 95.43%, 91.05%, and 92.31% accuracies for Insomnia, Normal dataset, and Fused cases, respectively. CONCLUSION: The recommended L-tetrolet pattern and TSRFINCA-based model push the envelope of current knowledge engineering by accurately classifying sleep stages even in the presence of sleep disorders.

7.
Comput Biol Med ; 150: 106100, 2022 11.
Article in English | MEDLINE | ID: mdl-36182761

ABSTRACT

Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand.


Subject(s)
Artificial Intelligence , Sleep Wake Disorders , Humans , Sleep , Algorithms , Machine Learning , Sleep Wake Disorders/diagnosis
8.
Comput Biol Med ; 145: 105407, 2022 06.
Article in English | MEDLINE | ID: mdl-35349801

ABSTRACT

Heart Rate Variability (HRV) is a good predictor of human health because the heart rhythm is modulated by a wide range of physiological processes. This statement embodies both challenges to and opportunities for HRV analysis. Opportunities arise from the wide-ranging applicability of HRV analysis for disease detection. The availability of modern high-quality sensors and the low data rate of heart rate signals make HRV easy to measure, communicate, store, and process. However, there are also significant obstacles that prevent a wider use of this technology. HRV signals are both nonstationary and nonlinear and, to the human eye, they appear noise-like. This makes them difficult to analyze and indeed the analysis findings are difficult to explain. Moreover, it is difficult to discriminate between the influences of different complex physiological processes on the HRV. These difficulties are compounded by the effects of aging and the presence of comorbidities. In this review, we have looked at scientific studies that have addressed these challenges with advanced signal processing and Artificial Intelligence (AI) methods.


Subject(s)
Artificial Intelligence , Electrocardiography , Electrocardiography/methods , Heart Rate/physiology , Humans , Signal Processing, Computer-Assisted
9.
Comput Methods Programs Biomed ; 216: 106677, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35139459

ABSTRACT

BACKGROUND AND OBJECTIVES: Photoplethysmography (PPG) is a device that measures the amount of light absorbed by the blood vessel, blood, and tissues, which can, in turn, translate into various measurements such as the variation in blood flow volume, heart rate variability, blood pressure, etc. Hence, PPG signals can produce a wide variety of biological information that can be useful for the detection and diagnosis of various health problems. In this review, we are interested in the possible health disorders that can be detected using PPG signals. METHODS: We applied PRISMA guidelines to systematically search various journal databases and identified 43 PPG studies that fit the criteria of this review. RESULTS: Twenty-five health issues were identified from these studies that were classified into six categories: cardiac, blood pressure, sleep health, mental health, diabetes, and miscellaneous. Various routes were employed in these PPG studies to perform the diagnosis: machine learning, deep learning, and statistical routes. The studies were reviewed and summarized. CONCLUSIONS: We identified limitations such as poor standardization of sampling frequencies and lack of publicly available PPG databases. We urge that future work should consider creating more publicly available databases so that a wide spectrum of health problems can be covered. We also want to promote the use of PPG signals as a potential precision medicine tool in both ambulatory and hospital settings.


Subject(s)
Machine Learning , Photoplethysmography , Blood Pressure , Delivery of Health Care , Heart Rate , Signal Processing, Computer-Assisted
10.
Article in English | MEDLINE | ID: mdl-35206124

ABSTRACT

Mask usage is one of the most important precautions to limit the spread of COVID-19. Therefore, hygiene rules enforce the correct use of face coverings. Automated mask usage classification might be used to improve compliance monitoring. This study deals with the problem of inappropriate mask use. To address that problem, 2075 face mask usage images were collected. The individual images were labeled as either mask, no masked, or improper mask. Based on these labels, the following three cases were created: Case 1: mask versus no mask versus improper mask, Case 2: mask versus no mask + improper mask, and Case 3: mask versus no mask. This data was used to train and test a hybrid deep feature-based masked face classification model. The presented method comprises of three primary stages: (i) pre-trained ResNet101 and DenseNet201 were used as feature generators; each of these generators extracted 1000 features from an image; (ii) the most discriminative features were selected using an improved RelieF selector; and (iii) the chosen features were used to train and test a support vector machine classifier. That resulting model attained 95.95%, 97.49%, and 100.0% classification accuracy rates on Case 1, Case 2, and Case 3, respectively. Having achieved these high accuracy values indicates that the proposed model is fit for a practical trial to detect appropriate face mask use in real time.


Subject(s)
COVID-19 , Masks , COVID-19/prevention & control , Humans , SARS-CoV-2 , Support Vector Machine
11.
Article in English | MEDLINE | ID: mdl-34360349

ABSTRACT

This paper presents a scientific foundation for automated stroke severity classification. We have constructed and assessed a system which extracts diagnostically relevant information from Magnetic Resonance Imaging (MRI) images. The design was based on 267 images that show the brain from individual subjects after stroke. They were labeled as either Lacunar Syndrome (LACS), Partial Anterior Circulation Syndrome (PACS), or Total Anterior Circulation Stroke (TACS). The labels indicate different physiological processes which manifest themselves in distinct image texture. The processing system was tasked with extracting texture information that could be used to classify a brain MRI image from a stroke survivor into either LACS, PACS, or TACS. We analyzed 6475 features that were obtained with Gray-Level Run Length Matrix (GLRLM), Higher Order Spectra (HOS), as well as a combination of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) methods. The resulting features were ranked based on the p-value extracted with the Analysis Of Variance (ANOVA) algorithm. The ranked features were used to train and test four types of Support Vector Machine (SVM) classification algorithms according to the rules of 10-fold cross-validation. We found that SVM with Radial Basis Function (RBF) kernel achieves: Accuracy (ACC) = 93.62%, Specificity (SPE) = 95.91%, Sensitivity (SEN) = 92.44%, and Dice-score = 0.95. These results indicate that computer aided stroke severity diagnosis support is possible. Such systems might lead to progress in stroke diagnosis by enabling healthcare professionals to improve diagnosis and management of stroke patients with the same resources.


Subject(s)
Magnetic Resonance Imaging , Stroke , Algorithms , Diagnosis, Computer-Assisted , Humans , Stroke/diagnostic imaging , Support Vector Machine
12.
Diagnostics (Basel) ; 11(8)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34441380

ABSTRACT

Abnormal heart rhythms, also known as arrhythmias, can be life-threatening. AFIB and AFL are examples of arrhythmia that affect a growing number of patients. This paper describes a method that can support clinicians during arrhythmia diagnosis. We propose a deep learning algorithm to discriminate AFIB, AFL, and NSR RR interval signals. The algorithm was designed with data from 4051 subjects. With 10-fold cross-validation, the algorithm achieved the following results: ACC = 99.98%, SEN = 100.00%, and SPE = 99.94%. These results are significant because they show that it is possible to automate arrhythmia detection in RR interval signals. Such a detection method makes economic sense because RR interval signals are cost-effective to measure, communicate, and process. Having such a cost-effective solution might lead to widespread long-term monitoring, which can help detecting arrhythmia earlier. Detection can lead to treatment, which improves outcomes for patients.

13.
Comput Biol Med ; 134: 104548, 2021 07.
Article in English | MEDLINE | ID: mdl-34119923

ABSTRACT

BACKGROUND: Autism spectrum disorder is a common group of conditions affecting about one in 54 children. Electroencephalogram (EEG) signals from children with autism have a common morphological pattern which makes them distinguishable from normal EEG. We have used this type of signal to design and implement an automated autism detection model. MATERIALS AND METHOD: We propose a hybrid lightweight deep feature extractor to obtain high classification performance. The system was designed and tested with a big EEG dataset that contained signals from autism patients and normal controls. (i) A new signal to image conversion model is presented in this paper. In this work, features are extracted from EEG signal using one-dimensional local binary pattern (1D_LBP) and the generated features are utilized as input of the short time Fourier transform (STFT) to generate spectrogram images. (ii) The deep features of the generated spectrogram images are extracted using a combination of pre-trained MobileNetV2, ShuffleNet, and SqueezeNet models. This method is named hybrid deep lightweight feature generator. (iii) A two-layered ReliefF algorithm is used for feature ranking and feature selection. (iv) The most discriminative features are fed to various shallow classifiers, developed using a 10-fold cross-validation strategy for automated autism detection. RESULTS: A support vector machine (SVM) classifier reached 96.44% accuracy based on features from the proposed model. CONCLUSIONS: The results strongly indicate that the proposed hybrid deep lightweight feature extractor is suitable for autism detection using EEG signals. The model is ready to serve as part of an adjunct tool that aids neurologists during autism diagnosis in medical centers.


Subject(s)
Autism Spectrum Disorder , Algorithms , Autism Spectrum Disorder/diagnosis , Child , Electroencephalography , Humans , Support Vector Machine
14.
Int J Imaging Syst Technol ; 31(2): 455-471, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33821093

ABSTRACT

In 2020 the world is facing unprecedented challenges due to COVID-19. To address these challenges, many digital tools are being explored and developed to contain the spread of the disease. With the lack of availability of vaccines, there is an urgent need to avert resurgence of infections by putting some measures, such as contact tracing, in place. While digital tools, such as phone applications are advantageous, they also pose challenges and have limitations (eg, wireless coverage could be an issue in some cases). On the other hand, wearable devices, when coupled with the Internet of Things (IoT), are expected to influence lifestyle and healthcare directly, and they may be useful for health monitoring during the global pandemic and beyond. In this work, we conduct a literature review of contact tracing methods and applications. Based on the literature review, we found limitations in gathering health data, such as insufficient network coverage. To address these shortcomings, we propose a novel intelligent tool that will be useful for contact tracing and prediction of COVID-19 clusters. The solution comprises a phone application combined with a wearable device, infused with unique intelligent IoT features (complex data analysis and intelligent data visualization) embedded within the system to aid in COVID-19 analysis. Contact tracing applications must establish data collection and data interpretation. Intelligent data interpretation can assist epidemiological scientists in anticipating clusters, and can enable them to take necessary action in improving public health management. Our proposed tool could also be used to curb disease incidence in future global health crises.

15.
Article in English | MEDLINE | ID: mdl-33477887

ABSTRACT

In this paper, we discuss hybrid decision support to monitor atrial fibrillation for stroke prevention. Hybrid decision support takes the form of human experts and machine algorithms working cooperatively on a diagnosis. The link to stroke prevention comes from the fact that patients with Atrial Fibrillation (AF) have a fivefold increased stroke risk. Early diagnosis, which leads to adequate AF treatment, can decrease the stroke risk by 66% and thereby prevent stroke. The monitoring service is based on Heart Rate (HR) measurements. The resulting signals are communicated and stored with Internet of Things (IoT) technology. A Deep Learning (DL) algorithm automatically estimates the AF probability. Based on this technology, we can offer four distinct services to healthcare providers: (1) universal access to patient data; (2) automated AF detection and alarm; (3) physician support; and (4) feedback channels. These four services create an environment where physicians can work symbiotically with machine algorithms to establish and communicate a high quality AF diagnosis.


Subject(s)
Atrial Fibrillation , Stroke , Algorithms , Atrial Fibrillation/diagnosis , Heart Rate , Humans , Monitoring, Physiologic , Stroke/prevention & control
17.
Article in English | MEDLINE | ID: mdl-32872667

ABSTRACT

AIM: In this study we have investigated the problem of cost effective wireless heart health monitoring from a service design perspective. SUBJECT AND METHODS: There is a great medical and economic need to support the diagnosis of a wide range of debilitating and indeed fatal non-communicable diseases, like Cardiovascular Disease (CVD), Atrial Fibrillation (AF), diabetes, and sleep disorders. To address this need, we put forward the idea that the combination of Heart Rate (HR) measurements, Internet of Things (IoT), and advanced Artificial Intelligence (AI), forms a Heart Health Monitoring Service Platform (HHMSP). This service platform can be used for multi-disease monitoring, where a distinct service meets the needs of patients having a specific disease. The service functionality is realized by combining common and distinct modules. This forms the technological basis which facilitates a hybrid diagnosis process where machines and practitioners work cooperatively to improve outcomes for patients. RESULTS: Human checks and balances on independent machine decisions maintain safety and reliability of the diagnosis. Cost efficiency comes from efficient signal processing and replacing manual analysis with AI based machine classification. To show the practicality of the proposed service platform, we have implemented an AF monitoring service. CONCLUSION: Having common modules allows us to harvest the economies of scale. That is an advantage, because the fixed cost for the infrastructure is shared among a large group of customers. Distinct modules define which AI models are used and how the communication with practitioners, caregivers and patients is handled. That makes the proposed HHMSP agile enough to address safety, reliability and functionality needs from healthcare providers.


Subject(s)
Artificial Intelligence , Atrial Fibrillation , Computer Communication Networks , Heart Rate , Monitoring, Ambulatory , Monitoring, Physiologic/economics , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Atrial Fibrillation/economics , Atrial Fibrillation/physiopathology , Efficiency, Organizational/economics , Humans , Information Systems , Monitoring, Ambulatory/economics , Monitoring, Ambulatory/methods , Monitoring, Physiologic/methods , Reproducibility of Results , Signal Processing, Computer-Assisted
18.
Article in English | MEDLINE | ID: mdl-32365521

ABSTRACT

Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals.


Subject(s)
Atrial Fibrillation , Atrial Fibrillation/diagnosis , Atrial Fibrillation/epidemiology , Electrocardiography , Humans , Monitoring, Physiologic
19.
Artif Intell Med ; 103: 101789, 2020 03.
Article in English | MEDLINE | ID: mdl-32143796

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and potentially misclassified during manual interpretation and/or when analyzed by traditional algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep learning techniques are favored over conventional machine learning techniques, due to the automatic feature extraction and selection processes involved. This paper highlights various deep learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. A 16-layer LSTM model was developed in our study and validated using 10-fold cross-validation. A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a useful diagnostic tool in hospitals for the classification of abnormal ECG signals.


Subject(s)
Electrocardiography/methods , Heart Diseases/diagnosis , Heart Diseases/pathology , Neural Networks, Computer , Signal Processing, Computer-Assisted , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/pathology , Deep Learning , Heart Diseases/diagnostic imaging , Heart Failure/diagnostic imaging , Heart Failure/pathology , Humans , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/pathology
20.
Comput Methods Programs Biomed ; 176: 81-91, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31200914

ABSTRACT

BACKGROUND AND OBJECTIVE: Sleep is an important part of our life. That importance is highlighted by the multitude of health problems which result from sleep disorders. Detecting these sleep disorders requires an accurate interpretation of physiological signals. Prerequisite for this interpretation is an understanding of the way in which sleep stage changes manifest themselves in the signal waveform. With that understanding it is possible to build automated sleep stage scoring systems. Apart from their practical relevance for automating sleep disorder diagnosis, these systems provide a good indication of the amount of sleep stage related information communicated by a specific physiological signal. METHODS: This article provides a comprehensive review of automated sleep stage scoring systems, which were created since the year 2000. The systems were developed for Electrocardiogram (ECG), Electroencephalogram (EEG), Electrooculogram (EOG), and a combination of signals. RESULTS: Our review shows that all of these signals contain information for sleep stage scoring. CONCLUSIONS: The result is important, because it allows us to shift our research focus away from information extraction methods to systemic improvements, such as patient comfort, redundancy, safety and cost.


Subject(s)
Deep Learning , Heart Rate , Polysomnography , Signal Processing, Computer-Assisted , Sleep Stages , Algorithms , Electrocardiography , Electroencephalography , Electrooculography , Humans , Internet , Medical Informatics , Normal Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...