Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Eur J Hum Genet ; 31(10): 1139-1146, 2023 10.
Article in English | MEDLINE | ID: mdl-37507557

ABSTRACT

The prevalence of pathogenic and likely pathogenic (P/LP) variants in genes associated with cancer predisposition syndromes (CPS) is estimated to be 8-18% for paediatric cancer patients. In more than half of the carriers, the family history is unsuspicious for CPS. Therefore, broad genetic testing could identify germline predisposition in additional children with cancer resulting in important implications for themselves and their families. We thus evaluated clinical trio genome sequencing (TGS) in a cohort of 72 paediatric patients with solid cancers other than retinoblastoma or CNS-tumours. The most prevalent cancer types were sarcoma (n = 26), neuroblastoma (n = 15), and nephroblastoma (n = 10). Overall, P/LP variants in CPS genes were identified in 18.1% of patients (13/72) and P/LP variants in autosomal-dominant CPS genes in 9.7% (7/72). Genetic evaluation would have been recommended for the majority of patients with P/LP variants according to the Jongmans criteria. Four patients (5.6%, 4/72) carried P/LP variants in autosomal-dominant genes known to be associated with their tumour type. With the immediate information on variant inheritance, TGS facilitated the identification of a de novo P/LP in NF1, a gonadosomatic mosaic in WT1 and two pathogenic variants in one patient (DICER1 and PALB2). TGS allows a more detailed characterization of structural variants with base-pair resolution of breakpoints which can be relevant for the interpretation of copy number variants. Altogether, TGS allows comprehensive identification of children with a CPS and supports the individualised clinical management of index patients and high-risk relatives.


Subject(s)
Genetic Predisposition to Disease , Neoplasms , Humans , Child , Germ-Line Mutation , Neoplasms/genetics , Genetic Testing/methods , Genotype , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics
2.
Cell Death Dis ; 14(5): 328, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198153

ABSTRACT

It has been well-established that mutations in BRCA1 and BRCA2, compromising functions in DNA double-strand break repair (DSBR), confer hereditary breast and ovarian cancer risk. Importantly, mutations in these genes explain only a minor fraction of the hereditary risk and of the subset of DSBR deficient tumors. Our screening efforts identified two truncating germline mutations in the gene encoding the BRCA1 complex partner ABRAXAS1 in German early-onset breast cancer patients. To unravel the molecular mechanisms triggering carcinogenesis in these carriers of heterozygous mutations, we examined DSBR functions in patient-derived lymphoblastoid cells (LCLs) and in genetically manipulated mammary epithelial cells. By use of these strategies we were able to demonstrate that these truncating ABRAXAS1 mutations exerted dominant effects on BRCA1 functions. Interestingly, we did not observe haploinsufficiency regarding homologous recombination (HR) proficiency (reporter assay, RAD51-foci, PARP-inhibitor sensitivity) in mutation carriers. However, the balance was shifted to use of mutagenic DSBR-pathways. The dominant effect of truncated ABRAXAS1 devoid of the C-terminal BRCA1 binding site can be explained by retention of the N-terminal interaction sites for other BRCA1-A complex partners like RAP80. In this case BRCA1 was channeled from the BRCA1-A to the BRCA1-C complex, which induced single-strand annealing (SSA). Further truncation, additionally deleting the coiled-coil region of ABRAXAS1, unleashed excessive DNA damage responses (DDRs) de-repressing multiple DSBR-pathways including SSA and non-homologous end-joining (NHEJ). Our data reveal de-repression of low-fidelity repair activities as a common feature of cells from patients with heterozygous mutations in genes encoding BRCA1 and its complex partners.


Subject(s)
Breast Neoplasms , Female , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Breast Neoplasms/pathology , DNA Breaks, Double-Stranded , DNA Repair/genetics , Mutagenesis , Mutation
3.
Mol Genet Genomic Med ; 11(6): e2151, 2023 06.
Article in English | MEDLINE | ID: mdl-36760167

ABSTRACT

BACKGROUND: Lynch syndrome is one of the most common cancer predisposition syndromes. It is caused by inherited changes in the mismatch repair pathway. With current diagnostic approaches, a causative genetic variant can be found in less than 50% of cases. A correct diagnosis is important for ensuring that an appropriate surveillance program is used and that additional high-risk family members are identified. METHODS: We used clinical genome sequencing on DNA from blood and subsequent transcriptome sequencing for confirmation. Data were analyzed using the megSAP pipeline and classified according to basic criteria in diagnostic laboratories. Segregation analyses in family members were conducted via breakpoint PCR. RESULTS: We present a family with the clinical diagnosis of Lynch syndrome in which standard diagnostic tests, such as panel or exome sequencing, were unable to detect the underlying genetic variant. Genome sequencing in the index patient confirmed the previous diagnostic results and identified an additional complex rearrangement with intronic breakpoints involving MLH1 and its neighboring gene LRRFIP2. The previously undetected structural variant was classified as medically relevant. Segregation analysis in the family identified additional at-risk individuals which were offered intensified cancer screening. DISCUSSION AND CONCLUSIONS: This case illustrates the advantages of clinical genome sequencing in detecting structural variants compared with current diagnostic approaches. Although structural variants are rare in Lynch syndrome families, they seem to be underreported, in part because of technical challenges. Clinical genome sequencing offers a comprehensive genetic characterization detecting a wide range of genetic variants.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Base Sequence , Introns , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism
4.
Eur J Cancer ; 179: 48-55, 2023 01.
Article in English | MEDLINE | ID: mdl-36495689

ABSTRACT

BACKGROUND: Sequencing of tumour tissue with comprehensive gene panels is increasingly used to guide treatment in precision oncology. Analysis of tumour-normal pairs allows in contrast to tumour-only assessment direct discrimination between somatic and germline alterations, which might have important implications not only for the patients but also their families. METHODS: We performed tumour normal sequencing with a large gene panel in 1048 patients with advanced cancer to support treatment decision. Sequencing results were correlated with clinical and family data. RESULTS: We identified 156 likely pathogenic or pathogenic (LP/P) germline variants in cancer predisposition genes (CPGs) in 144 cases (13.7%). Of all patients, 8.8% had a LP/P variant in autosomal-dominant cancer predisposition genes (AD-CPGs), most of them being genes with high or moderate penetrance (ATM, BRCA2, CHEK2 and BRCA1). In 48 cases, the P/LP variant matched the expected tumour spectrum. A second variant in tumour tissue was found in 31 patients with AD-CPG variants. Low frequency mutations in either TP53, ATM or DNMT3A in the normal sample indicated clonal haematopoiesis in five cases. CONCLUSIONS: Tumour-normal testing for personalised treatment identifies germline LP/P variants in a relevant proportion of patients with cancer. The majority of them would not have been referred to genetic counselling based on family history. Indirect functional readouts of tumour-normal sequencing can provide novel links between CPGs and unexpected cancers. The interpretation of increasingly complex datasets in precision oncology is challenging and concepts of interdisciplinary personalised cancer prevention are needed to support patients and their families.


Subject(s)
Hematologic Neoplasms , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Germ-Line Mutation , Mutation , Genes, BRCA2 , Genetic Predisposition to Disease , Genetic Testing/methods
5.
Commun Biol ; 5(1): 1061, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36203093

ABSTRACT

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


Subject(s)
Breast Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Heterozygote , Humans , RNA, Messenger
6.
J Clin Oncol ; 40(14): 1529-1541, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35077220

ABSTRACT

PURPOSE: To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management. METHODS: We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment. RESULTS: BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers. CONCLUSION: In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.


Subject(s)
Breast Neoplasms, Male , Breast Neoplasms , Ovarian Neoplasms , Pancreatic Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Infant, Newborn , Male , Mutation , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/genetics , Risk
7.
Mol Genet Genomic Med ; 9(12): e1807, 2021 12.
Article in English | MEDLINE | ID: mdl-34491624

ABSTRACT

BACKGROUND: Targeted sequencing approaches such as gene panel or exome sequencing have become standard of care for the diagnosis of rare and common genetic disease. The detection and interpretation of point mutations, small insertions and deletions, and even exon-level copy number variants are well established in clinical genetic testing. Other types of genetic variation such as mobile elements insertions (MEIs) are technically difficult to detect. In addition, their downstream clinical interpretation is more complex compared to point mutations due to a larger genomic footprint that can not only predict a clear loss of protein function but might disturb gene regulation and splicing even when located within the non-coding regions. As a consequence, the contribution of MEIs to disease and tumor development remains largely unexplored in routine diagnostics. METHODS: In this study, we investigated the occurrence of MEIs in 7,693 exome datasets from individuals with rare diseases and healthy relatives as well as 788 cancer patients analyzed by panel sequencing. RESULTS: We present several exemplary cases highlighting the diagnostic value of MEIs and propose a strategy for the detection, prioritization, and clinical interpretation of MEIs in routine clinical diagnostics. CONCLUSION: In this paper, we state that detection and interpretation of MEIs in clinical practice in targeted NGS data can be performed relatively easy despite the fact that MEIs very rarely occur in coding parts of the human genome. Large scale reanalysis of MEIs in existing cohorts may solve otherwise unsolvable cases.


Subject(s)
DNA Transposable Elements , Diagnostic Tests, Routine , Genetic Testing , Mutagenesis, Insertional , Computational Biology/methods , Genetic Predisposition to Disease , Genetics, Medical/methods , Germ-Line Mutation , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , Oncogenes , Rare Diseases/diagnosis , Rare Diseases/genetics , Sequence Analysis, DNA , Exome Sequencing
8.
J Natl Cancer Inst ; 113(7): 893-899, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33372680

ABSTRACT

BACKGROUND: Genome-wide association studies suggest that the combined effects of breast cancer (BC)-associated single nucleotide polymorphisms (SNPs) can improve BC risk stratification using polygenic risk scores (PRSs). The performance of PRSs in genome-wide association studies-independent clinical cohorts is poorly studied in individuals carrying mutations in moderately penetrant BC predisposition genes such as CHEK2. METHODS: A total of 760 female CHEK2 mutation carriers were included; 561 women were affected with BC, of whom 74 developed metachronous contralateral BC (mCBC). For PRS calculations, 2 SNP sets covering 77 (SNP set 1, developed for BC risk stratification in women unselected for their BRCA1/2 germline mutation status) and 88 (SNP set 2, developed for BC risk stratification in female BRCA1/2 mutation carriers) BC-associated SNPs were used. All statistical tests were 2-sided. RESULTS: Both SNP sets provided concordant PRS results at the individual level (r = 0.91, P < 2.20 × 10-16). Weighted cohort Cox regression analyses revealed statistically significant associations of PRSs with the risk for first BC. For SNP set 1, a hazard ratio of 1.71 per SD of the PRS was observed (95% confidence interval = 1.36 to 2.15, P = 3.87 × 10-6). PRSs identify a subgroup of CHEK2 mutation carriers with a predicted lifetime risk for first BC that exceeds the surveillance thresholds defined by international guidelines. Association of PRS with mCBC was examined via Cox regression analysis (SNP set 1 hazard ratio = 1.23, 95% confidence interval = 0.86 to 1.78, P = .26). CONCLUSIONS: PRSs may be used to personalize risk-adapted preventive measures for women with CHEK2 mutations. Larger studies are required to assess the role of PRSs in mCBC predisposition.


Subject(s)
Breast Neoplasms , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Checkpoint Kinase 2/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Germ-Line Mutation , Humans , Mutation , Risk Factors
9.
Geburtshilfe Frauenheilkd ; 80(4): 410-429, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32322110

ABSTRACT

More than ten years ago, the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) set up a panel of experts (VUS Task Force) which was tasked with reviewing the classifications of genetic variants reported by individual centres of the GC-HBOC to the central database in Leipzig and reclassifying them, where necessary, based on the most recent data. When it evaluates variants, the VUS Task Force must arrive at a consensus. The resulting classifications are recorded in a central database where they serve as a basis for ensuring the consistent evaluation of previously known and newly identified variants in the different centres of the GC-HBOC. The standardised VUS evaluation by the VUS Task Force is a key element of the recall system which has also been set up by the GC-HBOC. The system will be used to pass on information to families monitored and managed by GC-HBOC centres in the event that previously classified variants are reclassified based on new information. The evaluation algorithm of the VUS Task Force was compiled using internationally established assessment methods (IARC, ACMG, ENIGMA) and is presented here together with the underlying evaluation criteria used to arrive at the classification decision using a flow chart. In addition, the characteristics and special features of specific individual risk genes associated with breast and/or ovarian cancer are discussed in separate subsections. The URLs of relevant databases have also been included together with extensive literature references to provide additional information and cover the scope and dynamism of the current state of knowledge on the evaluation of genetic variants. In future, if criteria are updated based on new information, the update will be published on the website of the GC-HBOC ( https://www.konsortium-familiaerer-brustkrebs.de/ ).

10.
BMC Cancer ; 19(1): 787, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31395037

ABSTRACT

BACKGROUND: Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. METHODS: We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. RESULTS: Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00-27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6%; 95%-CI 24.7 - 47.7%) compared to 16 women of controls (26.7%; 95%-CI 16.1 to 39.7%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. CONCLUSIONS: To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results.


Subject(s)
BRCA1 Protein/genetics , Biomarkers, Tumor , Breast Neoplasms/genetics , DNA Repair , Genetic Predisposition to Disease , Sequence Deletion , Adult , Age of Onset , Aged , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Databases, Genetic , Female , Genetic Association Studies , Genetic Loci , Germany/epidemiology , Humans , Middle Aged , Neoplasm Grading , Neoplasm Staging , Population Surveillance , Risk Assessment , Risk Factors
11.
Front Neurol ; 10: 1332, 2019.
Article in English | MEDLINE | ID: mdl-31920950

ABSTRACT

Background: This study's aim was to investigate a large cohort of dystonia patients for pathogenic and rare variants in the ATM gene, making use of a new, cost-efficient enrichment technology for NGS-based screening. Methods: Single molecule Molecular Inversion Probes (smMIPs) were used for targeted enrichment and sequencing of all protein coding exons and exon-intron boundaries of the ATM gene in 373 dystonia patients and six positive controls with known ATM variants. Additionally, a rare-variant association study was performed. Results: One patient (0.3%) was compound heterozygous and 21 others were carriers of variants of unknown significance (VUS) in the ATM gene. Although mutations in sporadic dystonia patients are not common, exclusion of pathogenic variants is crucial to recognize a potential tumor predisposition syndrome. SmMIPs produced similar results as routinely used NGS-based approaches. Conclusion: Our results underline the importance of implementing ATM in the routine genetic testing of dystonia patients and confirm the reliability of smMIPs and their usability for germline screenings in rare neurodegenerative conditions.

12.
BMC Med Genet ; 19(1): 144, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111295

ABSTRACT

BACKGROUND: The PTEN-hamartoma-tumor-syndrome (PHTS) is caused by germline mutations in Phosphatase and Tensin homolog (PTEN) and predisposes to the development of several typical malignancies. Whereas PTEN mutations have been implicated in the occurrence of malignant mesotheliomas, the genetic landscape of verrucous carcinomas (VC) is largely uncharted. Both VC and malignant peritoneal mesotheliomas (MPM) are exceedingly rare and a potential link between these malignancies and PHTS has never been reported. CASE PRESENTATION: We here describe the clinical course of a PHTS patient who, in addition to a typical thyroid carcinoma at the age of 36 years, developed a highly-differentiated oral VC and an epithelioid MPM six years later. The patient with a history of occupational asbestos exposure underwent cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for MPM. The clinical diagnosis of PHTS was consequently corroborated by a germline PTEN deletion. Sequencing of tumor tissue revealed a second hit in PTEN in the thyroid carcinoma and VC, confirmed by a PTEN loss and activation of the PI3K/AKT pathway in immunohistochemistry. Furthermore, additional somatic mutations in the thyroid carcinoma as well as in the VC were detected, whereas the genetics of MPM remained unrevealing. DISCUSSION AND CONCLUSIONS: We here report the very unusual clinical course of a patient with rare tumors that have a germline mutation first hit in PTEN in common. Since this patient was exposed to asbestos and current evidence suggests molecular mechanisms that might render PHTS patients particularly susceptible to mesothelioma, we strongly recommend PHTS patients to avoid even minimal exposure.


Subject(s)
Carcinoma, Verrucous/genetics , Germ-Line Mutation/genetics , Lung Neoplasms/genetics , Mesothelioma/genetics , Mouth Neoplasms/genetics , PTEN Phosphohydrolase/genetics , Humans , Mesothelioma, Malignant , Rare Diseases
13.
Cancer Med ; 7(4): 1349-1358, 2018 04.
Article in English | MEDLINE | ID: mdl-29522266

ABSTRACT

The prevalence of germ line mutations in non-BRCA1/2 genes associated with hereditary breast cancer (BC) is low, and the role of some of these genes in BC predisposition and pathogenesis is conflicting. In this study, 5589 consecutive BC index patients negative for pathogenic BRCA1/2 mutations and 2189 female controls were screened for germ line mutations in eight cancer predisposition genes (ATM, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD51D, and TP53). All patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germ line testing. The highest mutation prevalence was observed in the CHEK2 gene (2.5%), followed by ATM (1.5%) and PALB2 (1.2%). The mutation prevalence in each of the remaining genes was 0.3% or lower. Using Exome Aggregation Consortium control data, we confirm significant associations of heterozygous germ line mutations with BC for ATM (OR: 3.63, 95%CI: 2.67-4.94), CDH1 (OR: 17.04, 95%CI: 3.54-82), CHEK2 (OR: 2.93, 95%CI: 2.29-3.75), PALB2 (OR: 9.53, 95%CI: 6.25-14.51), and TP53 (OR: 7.30, 95%CI: 1.22-43.68). NBN germ line mutations were not significantly associated with BC risk (OR:1.39, 95%CI: 0.73-2.64). Due to their low mutation prevalence, the RAD51C and RAD51D genes require further investigation. Compared with control datasets, predicted damaging rare missense variants were significantly more prevalent in CHEK2 and TP53 in BC index patients. Compared with the overall sample, only TP53 mutation carriers show a significantly younger age at first BC diagnosis. We demonstrate a significant association of deleterious variants in the CHEK2, PALB2, and TP53 genes with bilateral BC. Both, ATM and CHEK2, were negatively associated with triple-negative breast cancer (TNBC) and estrogen receptor (ER)-negative tumor phenotypes. A particularly high CHEK2 mutation prevalence (5.2%) was observed in patients with human epidermal growth factor receptor 2 (HER2)-positive tumors.


Subject(s)
Biomarkers, Tumor , Genes, BRCA1 , Genes, BRCA2 , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing/methods , Genetic Variation , Hereditary Breast and Ovarian Cancer Syndrome/epidemiology , Humans , Middle Aged , Odds Ratio , Prevalence , Young Adult
14.
J Med Genet ; 53(7): 465-71, 2016 07.
Article in English | MEDLINE | ID: mdl-26928436

ABSTRACT

PURPOSE: To characterise the prevalence of pathogenic germline mutations in BRCA1 and BRCA2 in families with breast cancer (BC) and ovarian cancer (OC) history. PATIENTS AND METHODS: Data from 21 401 families were gathered between 1996 and 2014 in a clinical setting in the German Consortium for Hereditary Breast and Ovarian Cancer, comprising full pedigrees with cancer status of all individual members at the time of first counselling, and BRCA1/2 mutation status of the index patient. RESULTS: The overall BRCA1/2 mutation prevalence was 24.0% (95% CI 23.4% to 24.6%). Highest mutation frequencies were observed in families with at least two OCs (41.9%, 95% CI 36.1% to 48.0%) and families with at least one breast and one OC (41.6%, 95% CI 40.3% to 43.0%), followed by male BC with at least one female BC or OC (35.8%; 95% CI 32.2% to 39.6%). In families with a single case of early BC (<36 years), mutations were found in 13.7% (95% CI 11.9% to 15.7%). Postmenopausal unilateral or bilateral BC did not increase the probability of mutation detection. Occurrence of premenopausal BC and OC in the same woman led to higher mutation frequencies compared with the occurrence of these two cancers in different individuals (49.0%; 95% CI 41.0% to 57.0% vs 31.5%; 95% CI 28.0% to 35.2%). CONCLUSIONS: Our data provide guidance for healthcare professionals and decision-makers to identify individuals who should undergo genetic testing for hereditary breast and ovarian cancer. Moreover, it supports informed decision-making of counselees on the uptake of genetic testing.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms, Male/genetics , Breast Neoplasms/genetics , Germ-Line Mutation/genetics , Ovarian Neoplasms/genetics , Adult , Female , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Humans , Male , Middle Aged , Prevalence
15.
Hum Mol Genet ; 25(11): 2256-2268, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27008870

ABSTRACT

A recent analysis using family history weighting and co-observation classification modeling indicated that BRCA1 c.594-2A > C (IVS9-2A > C), previously described to cause exon 10 skipping (a truncating alteration), displays characteristics inconsistent with those of a high risk pathogenic BRCA1 variant. We used large-scale genetic and clinical resources from the ENIGMA, CIMBA and BCAC consortia to assess pathogenicity of c.594-2A > C. The combined odds for causality considering case-control, segregation and breast tumor pathology information was 3.23 × 10-8 Our data indicate that c.594-2A > C is always in cis with c.641A > G. The spliceogenic effect of c.[594-2A > C;641A > G] was characterized using RNA analysis of human samples and splicing minigenes. As expected, c.[594-2A > C; 641A > G] caused exon 10 skipping, albeit not due to c.594-2A > C impairing the acceptor site but rather by c.641A > G modifying exon 10 splicing regulatory element(s). Multiple blood-based RNA assays indicated that the variant allele did not produce detectable levels of full-length transcripts, with a per allele BRCA1 expression profile composed of ≈70-80% truncating transcripts, and ≈20-30% of in-frame Δ9,10 transcripts predicted to encode a BRCA1 protein with tumor suppression function.We confirm that BRCA1c.[594-2A > C;641A > G] should not be considered a high-risk pathogenic variant. Importantly, results from our detailed mRNA analysis suggest that BRCA-associated cancer risk is likely not markedly increased for individuals who carry a truncating variant in BRCA1 exons 9 or 10, or any other BRCA1 allele that permits 20-30% of tumor suppressor function. More generally, our findings highlight the importance of assessing naturally occurring alternative splicing for clinical evaluation of variants in disease-causing genes.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Mutation/genetics , Ovarian Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Alternative Splicing/genetics , Breast Neoplasms/pathology , DNA Mutational Analysis , Exons/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Ovarian Neoplasms/pathology , RNA Splice Sites/genetics , RNA Splicing/genetics
16.
Breast Cancer Res Treat ; 152(1): 129-136, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26022348

ABSTRACT

Multi-gene panels are used to identify genetic causes of hereditary breast and ovarian cancer (HBOC) in large patient cohorts. This study compares the diagnostic workflow in two centers and gives valuable insights into different next-generation sequencing (NGS) strategies. Moreover, we present data from 620 patients sequenced at both centers. Both sequencing centers are part of the German consortium for hereditary breast and ovarian cancer (GC-HBOC). All 620 patients included in this study were selected following standard BRCA1/2 testing guidelines. A set of 10 sequenced genes was analyzed per patient. Twelve samples were exchanged and sequenced at both centers. NGS results were highly concordant in 12 exchanged samples (205/206 variants = 99.51 %). One non-pathogenic variant was missed at center B due to a sequencing gap (no technical coverage). The custom enrichment at center B was optimized during this study; for example, the average number of missing bases was reduced by a factor of four (vers. 1: 1939.41, vers. 4: 506.01 bp). There were no sequencing gaps at center A, but four CCDS exons were not included in the enrichment. Pathogenic mutations were found in 12.10 % (75/620) of all patients: 4.84 % (30/620) in BRCA1, 4.35 % in BRCA2 (27/620), 0.97 % in CHEK2 (6/620), 0.65 % in ATM (4/620), 0.48 % in CDH1 (3/620), 0.32 % in PALB2 (2/620), 0.32 % in NBN (2/620), and 0.16 % in TP53 (1/620). NGS diagnostics for HBOC-related genes is robust, cost effective, and the method of choice for genetic testing in large cohorts. Adding 8 genes to standard BRCA1- and BRCA2-testing increased the mutation detection rate by one-third.


Subject(s)
Genetic Testing/methods , Genetic Testing/standards , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Computational Biology/methods , Computational Biology/standards , DNA Mutational Analysis/standards , DNA Mutational Analysis/trends , Female , Genomics/methods , Genomics/standards , High-Throughput Nucleotide Sequencing , Humans , Mutation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...