Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 194(Pt A): 115407, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37611337

ABSTRACT

Marine mammals are considered sentinel species and may act as indicators of ocean health. Plastic residues are widely distributed in the oceans and are recognised as hazardous contaminants, and once ingested can cause several adverse effects on wildlife. This study aimed to identify and characterise plastic ingestion in the Guiana dolphins (Sotalia guianensis) from the Southwestern Tropical Atlantic by evaluating the stomach contents of stranded individuals through KOH digestion and identification of subsample of particles by LDIR Chemical Imaging System. Most of the individuals were contaminated, and the most common polymers identified were PU, PET and EVA. Microplastics were more prevalent than larger plastic particles (meso- and macroplastics). Smaller particles were detected during the rainy seasons. Moreover, there was a positive correlation between the stomach content mass and the number of microplastics, suggesting contamination through trophic transfer.


Subject(s)
Caniformia , Dolphins , Animals , Plastics , Microplastics , Cetacea , Polymers
2.
Mar Pollut Bull ; 192: 115087, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37263026

ABSTRACT

Microplastics (MPs) are ubiquitous in marine compartments, and their transboundary distribution favours the dispersion and accumulation of particles in ecosystems. This study investigated MP contamination in four coastal fish species (Haemulon squamipinna, Chaetodon ocellatus, Syacium micrurum, and Alphestes afer) from the southwestern Tropical Atlantic. An alkaline treatment was applied to extract MPs from the digestive tracts, and a Laser Direct Infrared (LDIR) system was used to identify polymers. All species analysed were contaminated with MPs, with Alphestes afer being the most contaminated (1.45 ± 1.09 MPs individual-1; frequency of occurrence 80 %). No significant differences were found in the number and size of detected particles among species. The most common shapes were fibres and films, and polyethylene was the most abundant polymer. This study provides important baseline data on MP contamination in coastal fish species inhabiting complex habitat areas relevant for conserving marine biodiversity.


Subject(s)
Bass , Water Pollutants, Chemical , Animals , Microplastics , Plastics/analysis , Ecosystem , Environmental Monitoring , Water Pollutants, Chemical/analysis , Polymers , Fishes
3.
Environ Pollut ; 327: 121532, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37001599

ABSTRACT

Plastic pollution is present in most marine environments; however, contamination in pelagic predators, including species of economic interest, is still poorly understood. This study aims to access the macro- and microplastic contamination in tuna and large pelagic species and verify whether a trophic transfer occurs from prey to tunas captured by two fleets in the Southwestern Tropical Atlantic (SWTA). We combined different methodological approaches to analyse the intake of macro- and microplastics. In addition to examining the plastics in the fish' stomachs, we investigated the contamination in the prey retrieved from the guts of predators. A low frequency of occurrence (3%) of macroplastic was detected in the tuna and large pelagic species; conversely, we observed a high frequency of microplastic in the tuna's stomachs (100%) and prey analysed (70%). We evinced the trophic transfer of microplastics by analysing the ingestion rate of particles in prey retrieved from the tuna stomachs. In the 34 analysed prey, we detected 355 microplastic particles. The most contaminated prey were cephalopods and fishes of the Bramidae family. The most frequent microplastic shapes in both prey and tuna stomachs were foams, pellets and fibres (<1 mm). A variety of polymers were identified; the most frequent were styrene-butadiene rubber (SBR), polyamide (PA), polyethylene terephthalate (PET) and polyethylene (PE). Our findings enhance scientific knowledge of how the ecological behaviour of marine species can affect microplastic intake.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics , Tuna , Water Pollutants, Chemical/analysis , Environmental Monitoring , Fishes
4.
Sci Total Environ ; 867: 161478, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36634781

ABSTRACT

Plastic debris is ubiquitous in the hydrosphere. Yet, we lack an understanding of contamination among deep-sea species and primarily how each trait can influence microplastic intake. We investigated microplastic contamination in the digestive tract of hyper-abundant mesopelagic lanternfishes (n = 364 individuals) from the Southwestern Tropical Atlantic, captured from 90 to 1000 m depth. Overall, microplastics were detected in most individuals analysed (frequency of occurrence = 68 %). Large microplastics, mostly of a filamentous shape were the most frequent, followed by smaller fragments and foams. Microplastics made of high-density polymers (PET, PVC, PA, SBR rubber) were more prevalent than low-density ones (PE, EVA and PBD rubber), especially under deeper layers. Larger microplastics were detected in lanternfishes captured off the northeastern Brazilian coast (mean 0.88 ± SE 0.06 mm) compared to those from around the Rocas Atoll and Fernando de Noronha Archipelago (0.70 ± 0.07 mm; p≤ 0.05), ∼350 km from the continent. Moreover, lanternfishes that migrate from the upper mesopelagic (200-500 m) to the epipelagic layers (<200 m) had simultaneously the highest intake and the smallest particles (1.65 ± 0.17 particles individual-1 and 0.55 ± 0.07 mm; p≤ 0.05). Biological mediated transport of microplastics from the epipelagic to the mesopelagic waters was evinced, but fishes foraging in shallower layers had the lowest intake (1.11 ± 0.10 part. ind.-1; p≤ 0.05). Furthermore, the jaw length was positively associated with an increment in microplastic intake (Incidence Rate Ratio = 1.1; p≤ 0.05). The lanternfishes that preferably prey upon fish larvae are more prone to microplastic intake than their counterparts, which forage mostly on crustaceans and gelatinous zooplankton (p≤ 0.05).


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Plastics , Rubber , Fishes , Polymers , Environmental Monitoring , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 56(14): 9999-10009, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35749650

ABSTRACT

Here, we evaluate for the first time the performances of the newly developed laser direct infrared (LDIR) technique and propose an optimization of the initial protocol for marine microplastics (MPs) analysis. Our results show that an 8 µm porosity polycarbonate filter placed on a Kevley slide enables preconcentration and efficient quantification of MPs, as well as polymer and size determination of reference plastic pellets of polypropylene (PP), polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET), with recoveries ranging from 80-100% and negligible blank values for particle sizes ranging from 200 to 500 µm. A spiked experiment using seawater, sediment, mussels, and fish stomach samples showed that the method responded linearly with significant slopes (R2 ranging from 0.93-1.0; p < 0.001, p < 0.01). Overall, 11 polymer types were identified with limited handling and an analysis time of ca. 3 h for most samples and 6 h for complex samples. Application of this technique to Mediterranean marine samples (seawater, sediment, fish stomachs and mussels) indicated MP concentrations and size distribution consistent with the literature. A high predominance of PVC (sediment, fish stomachs) and PE and PP (seawater, mussels) was observed in the analyzed samples.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Fishes , Lasers , Plastics/analysis , Polyethylene/analysis , Polymers , Polypropylenes/analysis , Polyvinyl Chloride , Water Pollutants, Chemical/analysis
6.
Environ Pollut ; 300: 118988, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35157937

ABSTRACT

Microplastics (MPs; <5 mm) are a macro issue recognised worldwide as a threat to biodiversity and ecosystems. Widely distributed in marine ecosystems, MPs have already been found in the deep-sea environment. However, there is little information on ecological mechanisms driving MP uptake by deep-sea species. For the first time, this study generates data on MP contamination in mesopelagic fishes from the Southwestern Tropical Atlantic (SWTA) to help understand the deep-sea contamination patterns. An alkaline digestion protocol was applied to extract MPs from the digestive tract of four mesopelagic fish species: Argyropelecus sladeni, Sternoptyx diaphana (Sternoptychidae), Diaphus brachycephalus, and Hygophum taaningi (Myctophidae). A total of 213 particles were recovered from 170 specimens, and MPs were found in 67% of the specimens. Fibres were the most common shape found in all species, whereas polyamide, polyethylene, and polyethylene terephthalate were the most frequent polymers. The most contaminated species was A. sladeni (93%), and the least contaminated was S. diaphana (45%). Interestingly, individuals caught in the lower mesopelagic zone (500-1000 m depth) were less contaminated with MPs than those captured in the upper mesopelagic layer (200-500 m). Our results highlight significant contamination levels and reveal the influence of mesopelagic fishes on MPs transport in the deep waters of the SWTA.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring/methods , Fishes , Plastics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Mar Pollut Bull ; 174: 113309, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35090293

ABSTRACT

Microplastics are a relevant environmental concern in marine ecosystems due to their ubiquity. However, knowledge on their dispersion patterns within the ocean basin and the interaction with biota are scarce and mostly limited to surface waters. This study investigated microplastic contamination in two species of deep-sea cephalopods from the southwestern Atlantic with different ecological behaviour: the vampire squid (Vampyroteuthis infernalis) and the midwater squid (Abralia veranyi). Microplastic contaminated most of the evaluated specimens. V. infernalis showed higher levels of contamination (9.58 ± 8.25 particles individual-1; p < 0.05) than A. veranyi (2.37 ± 2.13 part. ind.-1), likely due to the feeding strategy of V. infernalis as a faecal pellets feeder. The size of extracted microplastics was inversely proportional to the depth of foraging. The microplastics were highly heterogeneous in composition (shape, colour and polymer type). Our results provide information regarding microplastic interaction with deep-sea organisms and evidence of the biological influence in the microplastic sinking mechanism.


Subject(s)
Octopodiformes , Plastics , Animals , Decapodiformes , Ecosystem , Microplastics
8.
Environ Sci Pollut Res Int ; 29(17): 25799-25809, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34846659

ABSTRACT

The diffusive gradient in thin film technique was recently adapted to organic compounds. The diffusional coefficient (D) is a key parameter needed to calculate the time-weighted average concentration. In this study, two methods are used for D measurement in two gels (agarose and polyacrylamide): the diffusion cell method (Dcell) and the slice stacking method (Dstack). Thus, D were discussed and compared for 112 organic compounds, including pesticides, hormones, and pharmaceuticals. Dstack tends to be higher than Dcell. It could be explained by the presence of a non-negligible diffusive boundary layer thickness in diffusion cell. Consequently, the use of sampling rates (RS) should be more adequate to determine water concentration, for a given bulk flow velocity. Dstack also corresponds to the diffusion in gel only, allowing the determination of the maximal RS, and would be considered as a reference value that can be adjusted to in situ conditions, by applying the appropriate DBL thickness. The range and variability of D values found in the literature and obtained in this work were discussed. Relationships between D and compound physicochemical properties (molecular mass, log Dow, polar surface area, van der Waals volume) were investigated. We did not find clear and robust correlation between D and any single physicochemical property, for the set of compounds tested.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Acrylic Resins , Diffusion , Environmental Monitoring/methods , Organic Chemicals/chemistry , Sepharose/chemistry , Water Pollutants, Chemical/analysis
9.
Sci Total Environ ; 808: 151989, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34883176

ABSTRACT

Plastic pollution in freshwater ecosystems, including microplastics (MPs) smaller than 5 mm, has become an emerging global concern. Asia is considered a "hot spot" for plastic pollution due to rapid economic and demographic growth, together with rapid urbanization. Here, we provide an overview of the current knowledge on MP abundance, sources, fate, and transfer in Asian freshwater ecosystems based on publications from January 2014 to May 2021. MP contamination in freshwater compartments, including water, sediment, and biota, was found to vary strongly. In water, it ranged from 0.004 items m-3 in a moderately urbanized region to more than 500,000 items m-3 in a dumping river in a highly populated watershed. In the sediment, MP abundance ranged from 1 to more than 30,000 items kg-1 dry weight. Polyethylene (PE) and polypropylene (PP) were predominant in both water and sediment compartments. MP was detected in biota samples from all the studied species, but their abundance depended on the locations and species studied. Overall, MP characteristics (form, size, color, and polymer type) depended on sources and natural constraints (mainly hydrodynamics). This study also revealed that MP in Asian freshwater ecosystems mainly originated from domestic wastewater/runoff, followed by industrial emissions, fisheries and aquaculture wastewater. Plastic waste is not efficiently recycled or incinerated in Asia, leading to MP transfer and accumulation in the aquatic environment, and, more importantly, to ingestion by low to high trophic level organisms. This work highlights several knowledge gaps to guides future research to improve MP pollution management for the sustainable development of highly populated regions such as Asia.


Subject(s)
Microplastics , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Fresh Water , Plastics , Water Pollutants, Chemical/analysis
10.
Nat Commun ; 12(1): 4426, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34285235

ABSTRACT

Plastic garbage patches at the ocean surface are symptomatic of a wider pollution affecting the whole marine environment. Sinking of plastic debris increasingly appears to be an important process in the global fate of plastic in the ocean. However, there is insufficient knowledge about the processes affecting plastic distributions and degradation and how this influences the release of additives under varying environmental conditions, especially in deep-sea environments. Here we show that in abiotic conditions increasing hydrostatic pressure inhibits the leaching of the heaviest organic additives such as tris(2-ethylhexyl) phosphate and diisononyl phthalate from polyethylene and polyvinylchloride materials, whereas deep-sea and surface marine prokaryotes promote the release of all targeted additives (phthalates, bisphenols, organophosphate esters). This study provides empirical evidences for more efficient additive release at the ocean surface than in deep seawater, where the major plastic burden is supposed to transit through before reaching the sediment compartment.

11.
Environ Pollut ; 257: 113637, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31822360

ABSTRACT

We present here a comprehensive study (1-year regular sampling) on the occurrence of major families of organic plastic additives in the Rhône River surface waters. Potential sources and contaminant export are also discussed. A total of 22 dissolved phase samples were analyzed for 22 organic additives mainly used in the plastic industry, including organophosphate esters (OPEs), phthalates (PAEs) and bisphenols (BPs). Our results indicate that PAEs were the most abundant class, with concentrations ranging from 97 to 541 ng L-1, followed by OPEs (85-265 ng L-1) and BPs (4-21 ng L-1). Among PAEs, diethylhexyl phthalate (DEHP) was the most abundant compound, whereas TCPP (Tris(1-chloro-2-propyl) phosphate) and TnBP (Tri(n-butyl)phosphate) were the predominant OPEs. Bisphenol S was the only BP detected. 5-54 metric tons year-1 of dissolved organic plastic additives of emerging concern are estimated to be exported to the Gulf of Lion by the Rhône River, which is the main freshwater source of the Mediterranean Sea.


Subject(s)
Environmental Monitoring , Esters , Organophosphates , Rivers , Esters/analysis , France , Organophosphates/analysis , Plastics/chemistry , Rivers/chemistry
12.
PLoS One ; 14(9): e0222584, 2019.
Article in English | MEDLINE | ID: mdl-31527915

ABSTRACT

The present study reports on observations carried out in the Tropical North Atlantic in summer and autumn 2017, documenting Sargassum aggregations using both ship-deck observations and satellite sensor observations at three resolutions (MSI-10 m, OLCI-300 m, VIIRS-750 m and MODIS-1 km). Both datasets reported that in summer, Sargassum aggregations were mainly observed off Brazil and near the Caribbean Islands, while they accumulated near the African coast in autumn. Based on in situ observations, we propose a five-class typology allowing standardisation of the description of in situ Sargassum raft shapes and sizes. The most commonly observed Sargassum raft type was windrows, but large rafts composed of a quasi-circular patch hundreds of meters wide were also observed. Satellite imagery showed that these rafts formed larger Sargassum aggregations over a wide range of scales, with smaller aggregations (of tens of m2 area) nested within larger ones (of hundreds of km2). Match-ups between different satellite sensors and in situ observations were limited for this dataset, mainly because of high cloud cover during the periods of observation. Nevertheless, comparisons between the two datasets showed that satellite sensors successfully detected Sargassum abundance and aggregation patterns consistent with in situ observations. MODIS and VIIRS sensors were better suited to describing the Sargassum aggregation distribution and dynamics at Atlantic scale, while the new sensors, OLCI and MSI, proved their ability to detect Sargassum aggregations and to describe their (sub-) mesoscale nested structure. The high variability in raft shape, size, thickness, depth and biomass density observed in situ means that caution is called for when using satellite maps of Sargassum distribution and biomass estimation. Improvements would require additional in situ and airborne observations or very high-resolution satellite imagery.


Subject(s)
Sargassum/growth & development , Atlantic Ocean , Biomass , Brazil , Satellite Imagery/methods , Seasons , West Indies
13.
Mar Pollut Bull ; 149: 110491, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31421569

ABSTRACT

Four perfluoroalkyl substances (PFAS) were analyzed in 62 duplicate surface water samples from the Rhône River and Marseille Bay (France; NW Mediterranean Sea). Perfluorooctane sulfonate (PFOS) was detected in all samples and exceeded the European Environmental Quality Standard (EQS) values in over 80% of the cases. The most contaminated samples were from the Rhône River (up to 200 ng L-1 ∑4 PFAS), as well as those collected near a wastewater treatment plant outlet in Marseille Bay (up to 9 ng L-1 ∑4 PFAS). While PFOS was the predominant PFAS in Marseille Bay, remarkably high concentrations of perfluorohexanoic acid (PFHxA) were measured in the Rhône River (8-193 ng L-1). The relative abundances of individual compounds differed thus significantly between the Rhône River and Marseille Bay, indicating different sources. A simulation made with the MARS3D model showed that PFOS inputs from the Rhône River can enter Marseille Bay at levels > EQS.


Subject(s)
Caproates , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids , Bays , Environmental Monitoring , Fluorocarbons/analysis , France , Mediterranean Sea , Rivers , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 53(13): 7513-7521, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31244083

ABSTRACT

The release of emerging organic contaminants is identified among the most critical hazards to the marine environment, and plastic additives have received growing attention due to their worldwide distribution and potential deleterious effects. Here, we report dissolved surface water concentrations of two important families of plastic additives (organophosphate esters (OPEs) and bisphenols) and other related organic compounds (perfluorinated chemicals) measured in the North Atlantic from Cape Verde to the West Indies. We found that OPEs were the most abundant contaminants, reaching remarkably high concentrations in open ocean waters (1200 km offshore of the American Coast, at the location of the Amazon river plume during the sampling period), with up to 1.3 µg L-1 (Σ9OPEs). A Lagrangian analysis confirmed that these high concentrations of contaminants originated from the Amazon River plume and were transported more than 3000 km by the North Brazil Current and its retroflection. We thus consider the Amazon River as a major source of organic contaminants of emerging concern to the tropical North Atlantic Ocean and suggest that medium-/long-range contaminant transport occurs, most certainly facilitated by the highly stratified conditions offered by the river plume.


Subject(s)
Plastics , Rivers , Atlantic Ocean , Brazil , Cabo Verde
15.
Environ Sci Technol ; 53(1): 166-175, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30479129

ABSTRACT

Plastic debris in the environment contains plasticizers, such as phthalates (PAEs), that can be released during plastic aging. Here, two common plastic materials, an insulation layer of electric cables (polyvinyl chloride, PVC-cables) and plastic garbage bag (polyethylene, PE-bags), were incubated in natural seawater under laboratory conditions, and the PAE migration to the seawater phase was studied with varying light and bacterial conditions over a 90-day time course. Free PAEs diluted in seawater were also studied for bacterial degradation. Our results showed that, within the first month of incubation, both plastic materials significantly leached out PAEs into the surrounding water. We found that di-isobutyl phthalate (DiBP) and di- n-butyl phthalate (DnBP) were the main PAEs released from the PE-bags, with the highest values of 83.4 ± 12.5 and 120.1 ± 18.0 ng g-1 of plastic, respectively. Furthermore, dimethyl phthalate (DMP) and diethyl phthalate (DEP) were the main PAEs released from PVC-cables, with mass fractions as high as 9.5 ± 1.4 and 68.9 ± 10.3 ng g-1, respectively. Additionally, we found that light and bacterial exposure increased the total amount of PAEs released from PVC-cables by a factor of up to 5, whereas they had no influence in the case of PE-bags.


Subject(s)
Phthalic Acids , Plastics , Dibutyl Phthalate , Plasticizers , Polyvinyl Chloride , Seawater
16.
Mar Pollut Bull ; 133: 423-427, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30041331

ABSTRACT

The work presented here aims at comparing monitoring of S-metolachlor, the major pesticide in use in the Arcachon Bay (South West of France, transitional coastal area), by chemical analysis (monthly passive sampling) and contaminant dissipation modeling from sources (Mars-2D model). The global strategy consisted in i) identifying the major sources of S-metolachlor to the Bay, ii) monitoring these sources for 12 months, and iii) comparing modeled data in the Bay based on measured inputs, to chemical measurements made inside the Bay along with the 12-month source monitoring. Results first showed that the major S-metolachlor surface inputs to the Arcachon Bay are mainly from one single source. Modeled and measured data were in good agreement at 5 sites in the Bay, both in terms of concentration range and seasonal trends. Modeling thus offers a cost-effective solution for monitoring contaminants in transitional waters, overcoming in addition the technical limitations for measuring pg L-1 or lower levels in coastal waters. However, we highlighted that secondary sources may affect accuracy at local level.


Subject(s)
Acetamides/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Bays/analysis , Environmental Monitoring/methods , France , Models, Theoretical
17.
Sci Total Environ ; 621: 578-587, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29195205

ABSTRACT

Phthalic Acid Esters (PAEs) are a group of emerging organic contaminants that have become a serious issue because of their ubiquitous presence and hazardous impact on the marine environment worldwide. Seawater samples were collected monthly from December 2013 to November 2014 in the northwestern Mediterranean Sea (Marseille Bay). The samples were analyzed for dissolved organic carbon (DOC) as well as the molecular distribution of dissolved PAEs by using solid phase extraction followed by gas chromatography and mass spectrometry (GC/MS) analyses. The results demonstrated the occurrence of six PAEs, including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-isobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), benzylbutyl phthalate (BzBP) and diethylhexyl phthalate (DEHP), with total concentrations ranging from 130 to 1330ngL-1 (av. 522ngL-1). In Marseille Bay, the highest concentrations were detected in the bottom water from June to November 2014 and in the whole water column during the winter mixing period. This result suggests that resuspension of PAE-rich sediment, in relation to the accumulation of plastic debris above the seabed, or the higher degradation rate in the upper layer of the water column, plays a significant role in the PAE dynamics in coastal water. DEHP was the most abundant PAE in all of the surface samples and the summer bottom samples, followed by DiBP and DnBP, which also represent the largest fractions in the other bottom samples.

18.
Chemosphere ; 188: 241-248, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28886558

ABSTRACT

Glyphosate (PMG) is one of the most widely used herbicides with a reported 8.6 million tons applied globally in 2016. Due to widespread use and limited understanding of long-term environmental impacts, it is expected that future monitoring requirements for PMG and its primary metabolite aminomethyl phosphonic acid (AMPA) in aquatic environments will increase, along with the need for low cost monitoring and risk assessment strategies. The aim of this study was to investigate a microporous polyethylene tube (MPT; 2-mm thickness, 17.6 cm2 surface area, 35% porosity, 2.5 µm pore size) as a diffusive layer for the passive sampling of PMG and AMPA. Levels of PMG and AMPA sorbed to MPT were low (Kmw close to 1 mL g-1), validating MPT as a diffusive layer. Uptake experiments were conducted first under controlled laboratory conditions (pH = 6.8, 6 days), followed by an in situ freshwater lake system deployment (pH = 7.3, 11 days). PMG and AMPA accumulated linearly (slope relative standard deviation < 6%) under laboratory conditions with sampling rates (Rs) of 18 and 25 mL d-1, respectively. PMG in situ Rs was 28 mL d-1, and was not different from the one found in the laboratory. AMPA was below the limit of quantification (LOQ, 1 ng mL-1) in grab water samples, but was detected (>LOQ) in all passive samplers. Results illustrate the gain in sensitivity provided by the passive sampling technique, and the applicability of the device developed for the passive sampling of PMG and AMPA.


Subject(s)
Fresh Water/chemistry , Glycine/analogs & derivatives , Herbicides/analysis , Water Pollutants, Chemical/analysis , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/analysis , Diffusion , Environmental Monitoring/methods , Filtration , Glycine/analysis , Glycine/metabolism , Isoxazoles , Organophosphonates/analysis , Polyethylene , Porosity , Tetrazoles , Glyphosate
20.
Front Microbiol ; 7: 1388, 2016.
Article in English | MEDLINE | ID: mdl-27667986

ABSTRACT

Complexity of contaminants exposure needs to be taking in account for an appropriate evaluation of risks related to mixtures of pesticides released in the ecosystems. Toxicity assessment of such mixtures can be made through a variety of toxicity tests reflecting different level of biological complexity. This paper reviews the recent developments of passive sampling techniques for polar compounds, especially Polar Organic Chemical Integrative Samplers (POCIS) and Chemcatcher® and the principal assessment techniques using microalgae in laboratory experiments. The progresses permitted by the coupled use of such passive samplers and ecotoxicology testing as well as their limitations are presented. Case studies combining passive sampling devices (PSD) extracts and toxicity assessment toward microorganisms at different biological scales from single organisms to communities level are presented. These case studies, respectively, aimed (i) at characterizing the "toxic potential" of waters using dose-response curves, and (ii) at performing microcosm experiments with increased environmental realism in the toxicant exposure in term of cocktail composition and concentration. Finally perspectives and limitations of such approaches for future applications in the area of environmental risk assessment are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...