Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 23(2): 222-230, 2018 02.
Article in English | MEDLINE | ID: mdl-27550844

ABSTRACT

Variants in CLCN4, which encodes the chloride/hydrogen ion exchanger CIC-4 prominently expressed in brain, were recently described to cause X-linked intellectual disability and epilepsy. We present detailed phenotypic information on 52 individuals from 16 families with CLCN4-related disorder: 5 affected females and 2 affected males with a de novo variant in CLCN4 (6 individuals previously unreported) and 27 affected males, 3 affected females and 15 asymptomatic female carriers from 9 families with inherited CLCN4 variants (4 families previously unreported). Intellectual disability ranged from borderline to profound. Behavioral and psychiatric disorders were common in both child- and adulthood, and included autistic features, mood disorders, obsessive-compulsive behaviors and hetero- and autoaggression. Epilepsy was common, with severity ranging from epileptic encephalopathy to well-controlled seizures. Several affected individuals showed white matter changes on cerebral neuroimaging and progressive neurological symptoms, including movement disorders and spasticity. Heterozygous females can be as severely affected as males. The variability of symptoms in females is not correlated with the X inactivation pattern studied in their blood. The mutation spectrum includes frameshift, missense and splice site variants and one single-exon deletion. All missense variants were predicted to affect CLCN4's function based on in silico tools and either segregated with the phenotype in the family or were de novo. Pathogenicity of all previously unreported missense variants was further supported by electrophysiological studies in Xenopus laevis oocytes. We compare CLCN4-related disorder with conditions related to dysfunction of other members of the CLC family.


Subject(s)
Chloride Channels/genetics , Epileptic Syndromes/genetics , Intellectual Disability/genetics , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , Chloride Channels/metabolism , Epilepsy/genetics , Epileptic Syndromes/physiopathology , Family , Female , Genes, X-Linked , Genetic Diseases, X-Linked/genetics , Germ-Line Mutation , Humans , Intellectual Disability/metabolism , Male , Middle Aged , Mutation , Oocytes , Pedigree , Phenotype , Syndrome , White Matter/physiopathology , Xenopus laevis
2.
Hum Mutat ; 12(3): 153-71, 1998.
Article in English | MEDLINE | ID: mdl-9711873

ABSTRACT

Splice site nucleotide substitutions can be analyzed by comparing the individual information contents (Ri, bits) of the normal and variant splice junction sequences [Rogan and Schneider, 1995]. In the present study, we related splicing abnormalities to changes in Ri values of 111 previously reported splice site substitutions in 41 different genes. Mutant donor and acceptor sites have significantly less information than their normal counterparts. With one possible exception, primary mutant sites with <2.4 bits were not spliced. Sites with Ri values > or = 2.4 bits but less than the corresponding natural site usually decreased, but did not abolish splicing. Substitutions that produced small changes in Ri probably do not impair splicing and are often polymorphisms. The Ri values of activated cryptic sites were generally comparable to or greater than those of the corresponding natural splice sites. Information analysis revealed preexisting cryptic splice junctions that are used instead of the mutated natural site. Other cryptic sites were created or strengthened by sequence changes that simultaneously altered the natural site. Comparison between normal and mutant splice site Ri values distinguishes substitutions that impair splicing from those which do not, distinguishes null alleles from those that are partially functional, and detects activated cryptic splice sites.


Subject(s)
Mutation , RNA Splicing , Base Sequence , Humans , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...