Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 877: 162607, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36906030

ABSTRACT

Although ceramic objects are an important part of the worldwide cultural heritage, few investigations on the effects of lithobiontic growth on their outdoor conservation are available in the literature. Many aspects of the interaction between lithobionts and stones are still unknown or strongly debated, as in the case of equilibria between biodeterioration and bioprotection. This paper describes research on the colonization by lithobionts on outdoor ceramic Roman dolia and contemporary sculptures of the International Museum of Ceramics, Faenza (Italy). Accordingly, the study i) characterized the mineralogical composition and petrographic structure of the artworks, ii) performed porosimetric measurements, iii) identified lichen and microbial diversity, iv) elucidated the interaction of the lithobionts with the substrates. Moreover, v) the measurements of variability in stone surface hardness and in water absorption of colonized and uncolonized areas were collected to assess damaging and/or protective effects by the lithobionts. The investigation showed how the biological colonization depends on physical properties of the substrates as well on climatic conditions of environments in which the ceramic artworks are located. The results indicated that lichens Protoparmeliopsis muralis and Lecanora campestris may have a bioprotective effect on ceramics with high total porosity and pores with very small diameters, as they poorly penetrate the substrate, do not negatively affect surface hardness and are able to reduce the amount of absorbed water limiting the water ingress. By contrast, Verrucaria nigrescens, here widely found in association with rock-dwelling fungi, deeply penetrate terracotta causing substrate disaggregation, with negative consequences on surface hardness and water absorption. Accordingly, a careful evaluation of the negative and positive effects of lichens must be carried out before deciding their removal. Regarding biofilms, their barrier efficacy is related to their thickness and composition. Even if thin, they can impact negatively on substrates enhancing the water absorption in comparison to uncolonized parts.


Subject(s)
Lichens , Museums , Biofilms , Italy , Ceramics
2.
Curr Biol ; 32(7): 1599-1606.e2, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35167803

ABSTRACT

The strong air temperature warming between the 1950s and 2016 in the Antarctic Peninsula region1 exceeded the global average warming2,3 with evident impacts on terrestrial ecosystems and the two native Antarctic vascular plants Deschampsia antarctica Desv. and Colobanthus quitensis (Kunth) Bartl.4-10 Subsequently, a short but intense cooling occurred from the Antarctic Peninsula to the South Orkney Islands (1999-2016),1,11-13 impacting terrestrial ecosystems, with reduced lichen growth14 and no further expansion of D. antarctica in the Argentine Islands.5 The strong warming trend is predicted to resume15 with expansion of ice-free areas and continued impacts on the abiotic and biotic components of terrestrial ecosystems including the ingression of non-native species3,8,16,17 as recently recorded at Signy Island (South Orkney Islands).18-20 In this study we document acceleration in the expansion of D. antarctica and C. quitensis in the last decade (2009-2018) at Signy Island, where the air temperature warming trend resumed in summer after 2012. We hypothesize that the striking expansion of these plants is mainly triggered by summer air warming and release from the limitation of fur seal disturbance. We also hypothesize that the "pulse" climatic event of the strong air cooling detected in 2012 did not appear to influence the vegetation community dynamics on this island. This is the first evidence in Antarctica for accelerated ecosystem responses to climate warming, confirming similar observations in the Northern Hemisphere. Our findings support the hypothesis that future warming will trigger significant changes in these fragile Antarctic ecosystems.


Subject(s)
Acceleration , Ecosystem , Antarctic Regions
3.
World J Microbiol Biotechnol ; 36(7): 100, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32607867

ABSTRACT

Lithobionts (rock-dwelling organisms) have been recognized as agents of aesthetic and physico-chemical deterioration of stonework. In consequence, their removal from cultural heritage stone surfaces (CHSS) is widely considered a necessary step in conservation interventions. On the other hand, lithobiontic communities, including microbial biofilms ('biological patinas'), can help integrate CHSS with their environmental setting and enhance biodiversity. Moreover, in some cases bioprotective effects have been reported and even interpreted as potential biotechnological solutions for conservation. This paper reviews the plethora of traditional and innovative methodologies to characterize lithobionts on CHSS in terms of biodiversity, interaction with the stone substrate and impacts on durability. In order to develop the best management and conservation strategies for CHSS, such diagnosis should be acquired on a case-by-case basis, as generalized approaches are unlikely to be suitable for all lithobionts, lithologies, environmental and cultural contexts or types of stonework. Strategies to control biodeteriogenic lithobionts on CHSS should similarly be based on experimental evaluation of their efficacy, including long-term monitoring of the effects on bioreceptivity, and of their environmental safety. This review examines what is known about the efficacy of control methods based on traditional-commercial biocides, as well as those based on innovative application of substances of plant and microbial origin, and physical techniques. A framework for providing a balanced scientific assessment of the role of lithobionts on CHSS and integrating this knowledge into management and conservation decision-making is presented.


Subject(s)
Microbiological Phenomena , Soil Microbiology , Archaea/physiology , Bacteria , Biodegradation, Environmental , Biodiversity , Biofilms/growth & development , Construction Materials/microbiology , Disinfectants , Environmental Monitoring , Fungi/physiology , Lichens/physiology
4.
Environ Monit Assess ; 191(5): 260, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30949767

ABSTRACT

In bioaccumulation studies, the interpretation of pollutant contents in the target biomonitor has to be performed by assessing a deviation from an unaltered reference condition. A common strategy consists in the comparison with background element content (BEC) values, often built up by uncritically merging methodologically heterogeneous data. In this respect, the acid digestion of samples was identified as a major step affecting BEC data. Here, the analytical outcomes of two acid mixtures were compared on a set of matched paired samples of the lichen Pseudevernia furfuracea, a widely used biomonitor for which BEC values based on partial digestion were previously provided. The standard reference material BCR 482 (P. furfuracea) was used to validate analytical procedures consisting of either a HF total mineralization or an aqua regia partial one, both associated to ICP-MS multi-element analysis. In particular, the performance of the procedures was evaluated by comparing analytical results of field samples with the accuracy obtained on BCR aliquots (measured-to-expected percentage ratio). The total digestion showed a better performance for Al, As, Ba, Ca, Cd, Cu, Fe, Mn, Ni, Se, Sn, and Zn, whereas the opposite was found for Cr, Co, P, and S. Moreover, new BEC values were provided for P. furfuracea using a consolidated statistical approach, after a total sample digestion with hydrofluoric acid. The multivariate investigation of the background variability of 43 elements in 57 remote Italian sites led to the identification of geographically homogeneous areas for which BEC values are provided for use as reference in biomonitoring applications.


Subject(s)
Environmental Pollutants/analysis , Hydrochloric Acid/analysis , Lichens/metabolism , Nitric Acid/analysis , Trace Elements/analysis , Environmental Monitoring , Italy
5.
Sci Total Environ ; 622-623: 282-292, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29216469

ABSTRACT

In biomonitoring, the knowledge of background element content (BEC) values is an essential pre-requisite for the correct assessment of pollution levels. Here, we estimated the BEC values of a highly performing biomonitor, the epiphytic lichen Pseudevernia furfuracea, by means of a careful review of literature data, integrated by an extensive field survey. Methodologically homogeneous element content datasets, reflecting different exposure conditions across European and extra-European countries, were compiled and comparatively analysed. Element content in samples collected in remote areas was compared to that of potentially enriched samples, testing differences between medians for 25 elements. This analysis confirmed that the former samples were substantially unaffected by anthropogenic contributions, and their metrics were therefore proposed as a first overview at supra-national background level. We also showed that bioaccumulation studies suffer a huge methodological variability. Limited to original field data, we investigated the background variability of 43 elements in 62 remote Italian sites, characterized in GIS environment for anthropization, land use, climate and lithology at different scale resolution. The relationships between selected environmental descriptors and BEC were tested using Principal Component Regression (PCR) modelling. Elemental composition resulted significantly dependent on land use, climate and lithology. In the case of lithogenic elements, regression models correctly reproduced the lichen content throughout the country at randomly selected sites. Further descriptors should be identified only for As, Co, and V. Through a multivariate approach we also identified three geographically homogeneous macro-regions for which specific BECs were provided for use as reference in biomonitoring applications.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Lichens/chemistry , Environmental Biomarkers , Europe , Italy
6.
J Hazard Mater ; 308: 321-7, 2016 May 05.
Article in English | MEDLINE | ID: mdl-26852207

ABSTRACT

The natural occurrence of asbestos (NOA) in rural areas is a serious concern for human health and the dispersion route of asbestos in the proximity of natural asbestos-rich settings has been marginally evaluated so far. NOA may affect air, but also water and soil quality. In rural areas population may be exposed to asbestos with a largely unknown impact on human health. This work investigates the potential exposure of a farmer cultivating a field nearby the largest former asbestos mine of Western Europe (Balangero, Italy). The concentration of waterborne asbestos in the stream used to water the field was measured (ca. 2×10(5) fibers per liter, ff/L) and the cultivated ultramafic topsoil characterized, evidencing a remarkable occurrence of chrysotile. The worker's personal exposure and the environmental fiber dispersion during a simulated agricultural activity (tillage) were quantified in two independent trials. During the trials, the worker was exposed to average concentrations of 16 and 26 ff/L, with a peak of 40 ff/L. These data inform about the possible exposure of an agricultural worker to asbestos concentration higher than the accepted threshold of 2 ff/L. The release of asbestos fibers into the environment was negligible (0-2 ff/L).


Subject(s)
Asbestos/analysis , Environmental Pollutants/analysis , Occupational Exposure/analysis , Agriculture , Environmental Monitoring , Humans , Italy , Mining
7.
Appl Microbiol Biotechnol ; 82(2): 359-70, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19137287

ABSTRACT

Nonylphenol, the most abundant environmental pollutant with endocrine disrupting activity, is also toxic to plants and microorganisms, but its actual impact in the field is unknown. In this study, diversity of culturable soil microfungal and plant communities was assessed in a disused industrial estate, at three sites featuring different nonylphenol pollution. Although soil microfungal assemblages varied widely among the sites, no significant correlation was found with point pollutant concentrations, thus suggesting indirect effects of soil contamination on microfungal assemblages. The potential of indigenous fungi and plants to remove nonylphenol was assessed in mesocosm experiments. Poplar plants and a fungal consortium consisting of the most abundant strains in the nonylphenol-polluted soil samples were tested alone or in combination for their ability to reduce, under greenhouse conditions, nonylphenol levels either in a sterile, artificially contaminated sand substrate, or in two non-sterile soils from the original industrial area. Introduction of indigenous fungi consistently reduced nonylphenol levels in all substrates, up to ca. 70% depletion, whereas introduction of the plant proved to be effective only with high initial pollutant levels. In native non-sterile soil, nonylphenol depletion following fungal inoculation correlated with biostimulation of indigenous fungi, suggesting positive interactions between introduced and resident fungi.


Subject(s)
Fungi/metabolism , Phenols/metabolism , Plants/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Biodiversity , Fungi/growth & development , Phenols/chemistry , Plant Development , Soil Pollutants/chemistry
8.
Mycol Res ; 111(Pt 4): 473-81, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17512715

ABSTRACT

Sterile cultured isolates of lichen-forming ascomycetes have not yet been used to investigate mycobiont-mineral substrate interactions under controlled conditions. In this study Candelariella vitellina, Xanthoparmelia tinctina and Lecanora rupicola mycobionts were isolated and inoculated with chrysotile fibres in the laboratory, in order to verify whether physical and chemical weathering processes, which were already described in the field, may be reproduced in vitro. Tight adhesion of hyphae to chrysotile fibres was observed in all species. The adhering hyphae affected the chemical composition of asbestos fibres, with the selective depletion of magnesium being a prominent feature, as is the case in field conditions. Oxalic acid and pulvinic acid, mycobiont-derived metabolites of X. tinctina and C. vitellina, were involved in the weathering action. Time and environmental factors and the absence of biological synergisms strongly limited the chemical weathering in vitro compared with what was observed in the field. Nevertheless, the results show that in vitro incubation of sterile-cultured lichen-forming fungi with minerals is a practicable experimental system to investigate the weathering effects of different mycobionts and fungal compounds under controlled conditions.


Subject(s)
Asbestos/metabolism , Ascomycota/growth & development , Mineral Fibers/microbiology , Asbestos/chemistry , Ascomycota/ultrastructure , Hyphae/metabolism , Lichens/growth & development , Lichens/ultrastructure , Magnesium Oxide/analysis , Microscopy, Electron, Scanning , Mineral Fibers/analysis , Silicon Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL