Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Virol ; 98(7): e0036824, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38940586

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne pathogen responsible for an acute musculoskeletal disease in humans. Replication of the viral RNA genome occurs in specialized membranous replication organelles (ROs) or spherules, which contain the viral replication complex. Initially generated by RNA synthesis-associated plasma membrane deformation, alphavirus ROs are generally rapidly endocytosed to produce type I cytopathic vacuoles (CPV-I), from which nascent RNAs are extruded for cytoplasmic translation. By contrast, CHIKV ROs are poorly internalized, raising the question of their fate and functionality at the late stage of infection. Here, using in situ cryogenic-electron microscopy approaches, we investigate the outcome of CHIKV ROs and associated replication machinery in infected human cells. We evidence the late persistence of CHIKV ROs at the plasma membrane with a crowned protein complex at the spherule neck similar to the recently resolved replication complex. The unexpectedly heterogeneous and large diameter of these compartments suggests a continuous, dynamic growth of these organelles beyond the replication of a single RNA genome. Ultrastructural analysis of surrounding cytoplasmic regions supports that outgrown CHIKV ROs remain dynamically active in viral RNA synthesis and export to the cell cytosol for protein translation. Interestingly, rare ROs with a homogeneous diameter are also marginally internalized in CPV-I near honeycomb-like arrangements of unknown function, which are absent in uninfected controls, thereby suggesting a temporal regulation of this internalization. Altogether, this study sheds new light on the dynamic pattern of CHIKV ROs and associated viral replication at the interface with cell membranes in infected cells.IMPORTANCEThe Chikungunya virus (CHIKV) is a positive-stranded RNA virus that requires specialized membranous replication organelles (ROs) for its genome replication. Our knowledge of this viral cycle stage is still incomplete, notably regarding the fate and functional dynamics of CHIKV ROs in infected cells. Here, we show that CHIKV ROs are maintained at the plasma membrane beyond the first viral cycle, continuing to grow and be dynamically active both in viral RNA replication and in its export to the cell cytosol, where translation occurs in proximity to ROs. This contrasts with the homogeneous diameter of ROs during internalization in cytoplasmic vacuoles, which are often associated with honeycomb-like arrangements of unknown function, suggesting a regulated mechanism. This study sheds new light on the dynamics and fate of CHIKV ROs in human cells and, consequently, on our understanding of the Chikungunya viral cycle.


Subject(s)
Chikungunya virus , RNA, Viral , Virus Replication , Chikungunya virus/physiology , Humans , RNA, Viral/metabolism , RNA, Viral/genetics , Chikungunya Fever/virology , Viral Replication Compartments/metabolism , Organelles/virology , Organelles/ultrastructure , Organelles/metabolism , Cell Membrane/virology , Cell Membrane/metabolism , Cell Line , Cryoelectron Microscopy , Animals , Genome, Viral
2.
Radiat Res ; 201(5): 429-439, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38253061

ABSTRACT

The current geopolitical context has brought the radiological nuclear risk to the forefront of concerns. High-dose localized radiation exposure leads to the development of a musculocutaneous radiation syndrome affecting the skin and subcutaneous muscles. Despite the implementation of a gold standard treatment based on an invasive surgical procedure coupled with autologous cell therapy, a muscular defect frequently persists. Targeting the modulation of the Hedgehog (Hh) signaling pathway appears to be a promising therapeutic approach. Activation of this pathway enhances cell survival and promotes proliferation after irradiation, while inhibition by Cyclopamine facilitates differentiation. In this study, we compared the effects of three antagonists of Hh, Cyclopamine (CA), Vismodegib (VDG) and Sonidegib (SDG) on differentiation. A stable cell line of murine myoblasts, C2C12, was exposed to X-ray radiation (5 Gy) and treated with CA, VDG or SDG. Analysis of proliferation, survival (apoptosis), morphology, myogenesis genes expression and proteins production were performed. According to the results, VDG does not have a significant impact on C2C12 cells. SDG increases the expression/production of differentiation markers to a similar extent as CA, while morphologically, SDG proves to be more effective than CA. To conclude, SDG can be used in the same way as CA but already has a marketing authorization with an indication against basal cell cancers, facilitating their use in vivo. This proof of concept demonstrates that SDG represents a promising alternative to CA to promotes differentiation of murine myoblasts. Future studies on isolated and cultured satellite cells and in vivo will test this proof of concept.


Subject(s)
Hedgehog Proteins , Muscle, Skeletal , Regeneration , Signal Transduction , Animals , Mice , Hedgehog Proteins/metabolism , Hedgehog Proteins/antagonists & inhibitors , Muscle, Skeletal/radiation effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/cytology , Signal Transduction/drug effects , Signal Transduction/radiation effects , Cell Line , Regeneration/drug effects , Regeneration/radiation effects , Pyridines/pharmacology , Veratrum Alkaloids/pharmacology , Anilides/pharmacology , Biphenyl Compounds/pharmacology , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Apoptosis/drug effects , Apoptosis/radiation effects , Muscle Development/drug effects , Muscle Development/radiation effects
3.
Cells ; 12(11)2023 05 31.
Article in English | MEDLINE | ID: mdl-37296643

ABSTRACT

Cytokines secreted by individual immune cells regulate tissue regeneration and allow communication between various cell types. Cytokines bind to cognate receptors and trigger the healing process. Determining the orchestration of cytokine interactions with their receptors on their cellular targets is essential to fully understanding the process of inflammation and tissue regeneration. To this end, we have investigated the interactions of Interleukin-4 cytokine (IL-4)/Interleukin-4 cytokine receptor (IL-4R) and Interleukin-10 cytokine (IL-10)/Interleukin-10 cytokine receptor (IL-10R) using in situ Proximity Ligation Assays in a regenerative model of skin, muscle and lung tissues in the mini-pig. The pattern of protein-protein interactions was distinct for the two cytokines. IL-4 bound predominantly to receptors on macrophages and endothelial cells around the blood vessels while the target cells of IL-10 were mainly receptors on muscle cells. Our results show that in situ studies of cytokine-receptor interactions can unravel the fine details of the mechanism of action of cytokines.


Subject(s)
Cytokines , Interleukin-10 , Swine , Animals , Cytokines/metabolism , Interleukin-4 , Endothelial Cells/metabolism , Swine, Miniature , Receptors, Interleukin-10
4.
Biomedicines ; 11(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239087

ABSTRACT

Over the past 70 years, significant progress has been made in understanding the molecular and cellular mechanisms of inflammation and tissue regeneration [...].

5.
Biomedicines ; 10(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36551773

ABSTRACT

Macrophages play a key role in the inflammatory phase of wound repair and foreign body reactions-two important processes in the Masquelet-induced membrane technique for extremity reconstruction. The macrophage response depends largely on the nature of the biomaterials implanted. However, little is known about the influence of the macrophage microenvironment on the osteogenic properties of the induced membrane or subsequent bone regeneration. We used metakaolin, an immunogenic material, as an alternative spacer to standard polymethylmethacrylate (PMMA) in a Masquelet model in rats. Four weeks after implantation, the PMMA- and metakaolin-induced membranes were harvested, and their osteogenic properties and macrophage microenvironments were investigated by histology, immunohistochemistry, mass spectroscopy and gene expression analysis. The metakaolin spacer induced membranes with higher levels of two potent pro-osteogenic factors, transforming growth factor-ß (TGF-ß) and bone morphogenic protein-2 (BMP-2). These alternative membranes thus had greater osteogenic activity, which was accompanied by a significant expansion of the total macrophage population, including both the M1-like and M2-like subtypes. Microcomputed tomographic analysis showed that metakaolin-induced membranes supported bone regeneration more effectively than PMMA-induced membranes through better callus properties (+58%), although this difference was not significant. This study provides the first evidence of the influence of the immune microenvironment on the osteogenic properties of the induced membranes.

6.
Nat Microbiol ; 7(12): 1951-1955, 2022 12.
Article in English | MEDLINE | ID: mdl-36344621

ABSTRACT

The ongoing monkeypox virus (MPXV) outbreak is the largest ever recorded outside of Africa. We isolated and sequenced a virus from the first clinical MPXV case diagnosed in France (May 2022). We report that tecovirimat (ST-246), a US Food and Drug Administration approved drug, is efficacious against this isolate in vitro at nanomolar concentrations, whereas cidofovir is only effective at micromolar concentrations. Our results support the use of tecovirimat in ongoing human clinical trials.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , United States , Humans , Mpox (monkeypox)/drug therapy , Isoindoles/pharmacology , Isoindoles/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use
7.
Cells ; 11(21)2022 10 31.
Article in English | MEDLINE | ID: mdl-36359848

ABSTRACT

Flower morphologies shape the accessibility to nectar and pollen, two major traits that determine plant-pollinator interactions and reproductive success. Melon is an economically important crop whose reproduction is completely pollinator-dependent and, as such, is a valuable model for studying crop-ecological functions. High-resolution imaging techniques, such as micro-computed tomography (micro-CT), have recently become popular for phenotyping in plant science. Here, we implemented micro-CT to study floral morphology and honey bees in the context of nectar-related traits without a sample preparation to improve the phenotyping precision and quality. We generated high-quality 3D models of melon male and female flowers and compared the geometric measures. Micro-CT allowed for a relatively easy and rapid generation of 3D volumetric data on nectar, nectary, flower, and honey bee body sizes. A comparative analysis of male and female flowers showed a strong positive correlation between the nectar gland volume and the volume of the secreted nectar. We modeled the nectar level inside the flower and reconstructed a 3D model of the accessibility by honey bees. By combining data on flower morphology, the honey bee size and nectar volume, this protocol can be used to assess the flower accessibility to pollinators in a high resolution, and can readily carry out genotypes comparative analysis to identify nectar-pollination-related traits.


Subject(s)
Plant Nectar , Pollination , Bees , Animals , X-Ray Microtomography , X-Rays , Flowers/anatomy & histology
8.
Biology (Basel) ; 11(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-36101361

ABSTRACT

Background: Radiation cystitis (RC) results from chronic inflammation, fibrosis, and vascular damage. The urinary symptoms it causes have a serious impact on patients' quality of life. Despite the improvement in irradiation techniques, the incidence of radiation cystitis remains stable over time, and the therapeutic possibilities remain limited. Mesenchymal stem/stromal cells (MSC) appear to offer2 a promising therapeutic approach by promoting tissue repair through their paracrine action via extracellular vesicles (MSC-EVs) or conditioned medium from human mesenchymal stromal cells (MSC-CM). We assess the therapeutic potential of MSC-EVs or MSC-CM in an in vitro model of RC. Methods:in vitro RC was induced by irradiation of human bladder fibroblasts (HUBF) with the small-animal radiation research platform (SARRP). HUBF were induced towards an RC phenotype after 3 × 3.5 Gy irradiation in the presence of either MSC-EVs or MSC-CM, to assess their effect on fibrosis, angiogenesis, and inflammatory markers. Results: Our data revealed in vitro a higher therapeutic potential of MSC-EVs and MSC-CM in prevention of RC. This was confirmed by down-regulation of α-SMA and CTGF transcription, and the induction of the secretion of anti-fibrotic cytokines, such as IFNγ, IL10 and IL27 and the decrease in the secretion of pro-fibrotic cytokines, IGFBP2, IL1ß, IL6, IL18, PDGF, TNFα, and HGF, by irradiated HUBFs, conditioned with MSC-EVs or MSC-CM. The secretome of MSC (MSC-CM) or its subsecretome (MSC-EVs) are proangiogenic, with the ability to induce vessels from HUVEC cells, ensuring the management of bladder vascular lesions induced by irradiation. Conclusion: MSC-EVs and MSC-CM appear to have promising therapeutic potential in the prevention of RC in vitro, by targeting the three main stages of RC: fibrosis, inflammation and vascular damage.

9.
Biomedicines ; 10(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35740407

ABSTRACT

Biomaterial use is a promising approach to facilitate wound healing of the bone tissue. Biomaterials induce the formation of membrane capsules and the recruitment of different types of macrophages. Macrophages are immune cells that produce diverse combinations of cytokines playing an important role in bone healing and regeneration, but the exact mechanism remains to be studied. Our work aimed to identify in vivo macrophages in the Masquelet induced membrane in a rat model. Most of the macrophages in the damaged area were M2-like, with smaller numbers of M1-like macrophages. In addition, high expression of IL-1ß and IL-6 cytokines were detected in the membrane region by RT-qPCR. Using an innovative combination of two hybridization techniques (in situ hybridization and in situ hybridization chain reaction (in situ HCR)), M2b-like macrophages were identified for the first time in cryosections of non-decalcified bone. Our work has also demonstrated that microspectroscopical analysis is essential for macrophage characterization, as it allows the discrimination of fluorescence and autofluorescence. Finally, this work has revealed the limitations of immunolabelling and the potential of in situ HCR to provide valuable information for in vivo characterization of macrophages.

10.
Biomedicines ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35203694

ABSTRACT

Bone is a very complex tissue that is constantly changing throughout the lifespan. The precise mechanism of bone regeneration remains poorly understood. Large bone defects can be caused by gunshot injury, trauma, accidents, congenital anomalies and tissue resection due to cancer. Therefore, understanding bone homeostasis and regeneration has considerable clinical and scientific importance in the development of bone therapy. Macrophages are well known innate immune cells secreting different combinations of cytokines and their role in bone regeneration during bone healing is essential. Here, we present a method to identify mRNA transcripts in cryosections of non-decalcified rat bone using in situ hybridization and hybridization chain reaction to explore gene expression in situ for better understanding the gene expression of the bone tissues.

11.
Inhal Toxicol ; 33(9-14): 308-324, 2021.
Article in English | MEDLINE | ID: mdl-34772293

ABSTRACT

OBJECTIVE: Solid composite propellants combustion, in aerospace and defense fields, can lead to complex aerosols emission containing high concentrations of alumina nanoparticles (Al2O3 NPs) and hydrogen chloride gas (HClg). Exposure to these mixtures by inhalation is thus possible but literature data toward their pulmonary toxicity are missing. To specify hazards resulting from these combustion aerosols, a pilot study was implemented. MATERIALS AND METHODS: Male Wistar rats were nose-only exposed to Al2O3 NPs (primary size 13 nm, 10 g/L suspension leading to 20.0-22.1 mg/m3 aerosol) and/or to HClg aerosols (5 ppm target concentration) following two exposure scenarios (single exposures (SE) or repeated exposures (RE)). Bronchoalveolar lavage fluids (BALF) content and lungs histopathology were analyzed 24 h after exposures. RESULTS: Repeated co-exposures increased total proteins and LDH concentrations in BALF indicating alveolar-capillary barrier permeabilization and cytolysis. Early pulmonary inflammation was induced after RE to Al2O3 NPs ± HClg resulting in PMN, TNF-α, IL-1ß, and GRO/KC increases in BALF. Both exposure scenarios resulted in pulmonary histopathological lesions (vascular congestions, bronchial pre-exfoliations, vascular and interalveolar septum edemas). Lung oxidative damages were observed in situ following SE. CONCLUSION: Observed biological effects are dependent on both aerosol content and exposure scenario. Results showed an important pro-inflammatory effect of Al2O3 NPs/HClg mixtures on the lungs of rat 24 h after exposure. This pilot study raises concerns toward potential long-term pulmonary toxicity of combustion aerosols and highlights the importance for further studies to be led in order to define dose limitations and exposure thresholds for risk management at the work place.


Subject(s)
Nanoparticles , Pneumonia , Aerosols/toxicity , Aluminum Oxide/toxicity , Animals , Bronchoalveolar Lavage Fluid , Hydrochloric Acid , Inhalation Exposure/adverse effects , Lung , Male , Nanoparticles/toxicity , Pilot Projects , Rats , Rats, Wistar
12.
Biomedicines ; 9(10)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34680510

ABSTRACT

Understanding the processes of inflammation and tissue regeneration after injury is of great importance. For a long time, macrophages have been known to play a central role during different stages of inflammation and tissue regeneration. However, the molecular and cellular mechanisms by which they exert their effects are as yet mostly unknown. While in vitro macrophages have been characterized, recent progress in macrophage biology studies revealed that macrophages in vivo exhibited distinctive features. Actually, the precise characterization of the macrophages in vivo is essential to develop new healing treatments and can be approached via in situ analyses. Nowadays, the characterization of macrophages in situ has improved significantly using antigen surface markers and cytokine secretion identification resulting in specific patterns. This review aims for a comprehensive overview of different tools used for in situ macrophage identification, reporter genes, immunolabeling and in situ hybridization, discussing their advantages and limitations.

13.
Genes (Basel) ; 12(5)2021 04 27.
Article in English | MEDLINE | ID: mdl-33925331

ABSTRACT

Advances in understanding tissue regenerative mechanisms require the characterization of in vivo macrophages as those play a fundamental role in this process. This characterization can be approached using the immuno-fluorescence method with widely studied and used pan-markers such as CD206 protein. This work investigated CD206 expression in an irradiated-muscle pig model using three different antibodies. Surprisingly, the expression pattern during immunodetection differed depending on the antibody origin and could give some false results. False results are rarely described in the literature, but this information is essential for scientists who need to characterize macrophages. In this context, we showed that in situ hybridization coupled with hybridization-chain-reaction detection (HCR) is an excellent alternative method to detect macrophages in situ.


Subject(s)
Fluorescent Antibody Technique/methods , Macrophages/metabolism , Macrophages/physiology , Regeneration/physiology , Animals , Antibodies/metabolism , Biomarkers/metabolism , In Situ Hybridization/methods , Lectins, C-Type/metabolism , Mannose Receptor , Mannose-Binding Lectins/metabolism , Receptors, Cell Surface/metabolism , Swine
14.
Sci Rep ; 11(1): 4280, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608597

ABSTRACT

Producing industrially significant compounds with more environmentally friendly represents a challenging task. The large-scale production of an exogenous molecule in a host microfactory can quickly cause toxic effects, forcing the cell to inhibit production to survive. The key point to counter these toxic effects is to promote a gain of tolerance in the host, for instance, by inducing a constant flux of the neo-synthetized compound out of the producing cells. Efflux pumps are membrane proteins that constitute the most powerful mechanism to release molecules out of cells. We propose here a new biological model, Deinococcus geothermalis, organism known for its ability to survive hostile environment; with the aim of coupling the promising industrial potential of this species with that of heterologous efflux pumps to promote engineering tolerance. In this study, clones of D. geothermalis containing various genes encoding chromosomal heterologous efflux pumps were generated. Resistant recombinants were selected using antibiotic susceptibility tests to screen promising candidates. We then developed a method to determine the efflux efficiency of the best candidate, which contains the gene encoding the MdfA of Salmonella enterica serovar Choleraesuis. We observe 1.6 times more compound in the external medium of the hit recombinant than that of the WT at early incubation time. The data presented here will contribute to better understanding of the parameters required for efficient production in D. geothermalis.


Subject(s)
Biotechnology , Deinococcus/genetics , Deinococcus/metabolism , Drug Tolerance , Genetic Engineering , Membrane Transport Proteins/genetics , Anti-Bacterial Agents/pharmacology , Cloning, Molecular , Deinococcus/drug effects , Drug Tolerance/genetics , Fermentation , Gene Expression , Genome, Bacterial , Genomics/methods , Membrane Transport Proteins/metabolism
15.
PLoS Negl Trop Dis ; 15(2): e0008913, 2021 02.
Article in English | MEDLINE | ID: mdl-33592059

ABSTRACT

BACKGROUND: Melioidosis is an endemic disease in southeast Asia and northern Australia caused by the saprophytic bacteria Burkholderia pseudomallei, with a high mortality rate. The clinical presentation is multifaceted, with symptoms ranging from acute septicemia to multiple chronic abscesses. Here, we report a chronic case of melioidosis in a patient who lived in Malaysia in the 70s and was suspected of contracting tuberculosis. Approximately 40 years later, in 2014, he was diagnosed with pauci-symptomatic melioidosis during a routine examination. Four strains were isolated from a single sample. They showed divergent morphotypes and divergent antibiotic susceptibility, with some strains showing resistance to trimethoprim-sulfamethoxazole and fluoroquinolones. In 2016, clinical samples were still positive for B. pseudomallei, and only one type of strain, showing atypical resistance to meropenem, was isolated. PRINCIPAL FINDINGS: We performed whole genome sequencing and RT-qPCR analysis on the strains isolated during this study to gain further insights into their differences. We thus identified two types of resistance mechanisms in these clinical strains. The first one was an adaptive and transient mechanism that disappeared during the course of laboratory sub-cultures; the second was a mutation in the efflux pump regulator amrR, associated with the overexpression of the related transporter. CONCLUSION: The development of such mechanisms may have a clinical impact on antibiotic treatment. Indeed, their transient nature could lead to an undiagnosed resistance. Efflux overexpression due to mutation leads to an important multiple resistance, reducing the effectiveness of antibiotics during treatment.


Subject(s)
Burkholderia pseudomallei/drug effects , Burkholderia pseudomallei/genetics , Drug Resistance, Multiple, Bacterial/genetics , Melioidosis/microbiology , Aged, 80 and over , Anti-Bacterial Agents , Humans , Malaysia , Male , Membrane Transport Proteins/genetics , Meropenem , Microbial Sensitivity Tests , Real-Time Polymerase Chain Reaction , Trimethoprim, Sulfamethoxazole Drug Combination , Whole Genome Sequencing
16.
Cytokine ; 137: 155318, 2021 01.
Article in English | MEDLINE | ID: mdl-33045525

ABSTRACT

Macrophages play a fundamental role in the different stages of muscle regeneration although the precise mechanisms involved are not entirely understood. Here we investigated the types of macrophages and cytokines that appeared in muscles after local gamma irradiation of mini-pigs that underwent no subsequent treatment or received three successive adipose tissue-derived stem cell (ASC) injections. Although some variability was observed among the three animals included in each study group, a general picture emerged. No macrophages appeared in control muscles from regions that had not been irradiated nor in muscles from irradiated regions derived from two animals. A third irradiated, but untreated animal, with characteristic muscle fibrosis and necrosis due to irradiation, showed invasion of M2 macrophages within small muscle lesions. In contrast, among the three ASC-treated and irradiated animals, one of them had completely recovered normal muscle architecture at the time of sampling with no invading macrophages, muscle from a second one contained mostly M1 macrophages and some M2-like macrophages whereas muscle from a third one displayed granulomas and giant cells. ASC treatment was associated with the presence of similar levels of pro-inflammatory cytokines within the two animals in the process of muscle regeneration whereas the levels of IL-4 and IL-10 expression were distinct from one animal to another. Microspectrofluorimetry and in situ hybridization revealed strong expression of TGF-ß1 and TNFα in regenerating muscle. Overall, the data confirm the critical role of macrophages in muscle regeneration and suggest the involvement of a complex network of cytokine expression for successful recovery.


Subject(s)
Gamma Rays , Giant Cells/radiation effects , Granuloma/metabolism , Macrophages/radiation effects , Muscle, Skeletal/radiation effects , Regeneration/radiation effects , Animals , Cytokines/genetics , Female , Gene Expression Regulation/radiation effects , Giant Cells/metabolism , Granuloma/genetics , Granuloma/pathology , In Situ Hybridization/methods , Macrophages/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Radiation Injuries, Experimental/genetics , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/physiopathology , Regeneration/genetics , Swine , Swine, Miniature , Transforming Growth Factor beta1/genetics , Tumor Necrosis Factor-alpha/genetics
17.
FASEB J ; 34(12): 15675-15686, 2020 12.
Article in English | MEDLINE | ID: mdl-33078886

ABSTRACT

Macrophages are a heterogeneous population of cells with an important role in innate immunity and tissue regeneration. Based on in vitro experiments, macrophages have been subdivided into five distinct subtypes named M1, M2a, M2b, M2c, and M2d, depending on the means of their activation and the cell surface markers they display. Whether all subtypes can be detected in vivo is still unclear. The identification of macrophages in vivo in the regenerating muscle could be used as a new diagnostic tool to monitor therapeutic strategies for tissue repair. The use of classical immunolabeling techniques is unable to discriminate between different M2 macrophages and a functional characterization of these macrophages is lacking. Using in situ hybridization coupled with hybridization-chain-reaction detection (HCR), we achieved the identification of M2d-like macrophages within regenerating muscle and applied this technique to understand the role of M2 macrophages in the regeneration of irradiated pig-muscle after adipose tissue stem cell treatment. Our work highlights the limits of immunolabeling and the usefulness of HCR analysis to provide valuable information for macrophage characterization.


Subject(s)
In Situ Hybridization/methods , Macrophages/cytology , Adipose Tissue/cytology , Animals , Immunohistochemistry/methods , Stem Cells/cytology , Swine , Swine, Miniature
18.
Toxicol In Vitro ; 59: 135-149, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31004741

ABSTRACT

Applications using alumina nanoparticles (Al2O3 NPs) have incredibly increased in different fields of activity. In defense and aerospace fields, solid composite propellants use leads to complex combustion aerosols emissions containing high concentrations of Al2O3 NPs and hydrogen chloride gas (HCl). To better characterize potential hazard resulting from exposure to these aerosols, this study assesses cytotoxic effects of mixtures containing both compounds on human pulmonary alveolar epithelial cells (A549 cell line) after 24 h exposures. After all co-exposures cell viability was >80%. However co-exposures decrease normalized real-time cell index. Significant decreases of intracellular reduced glutathione pool were also observed after co-exposures to γ-10 nm or γ/δ-13 nm Al2O3 NPs and HCl. Co-incubations with γ/δ-13 nm or γ-500 nm Al2O3 particles and HCl induced significant DNA double-strand breaks increases. Moreover all co-exposures and HCl alone disrupted cell cycle (increased G1 phase cells). Transmission Electron Microscopy (TEM) observations revealed γ/δ-13 nm Al2O3NPs adsorption and internalization in cell cytoplasm only, suggesting indirect genotoxic effects. According to our results Al2O3 particles/HCl mixtures can induce cytotoxic effects and Al2O3 size and crystallinity are two main parameters influencing cytotoxic mechanisms.


Subject(s)
Aluminum Oxide/toxicity , Alveolar Epithelial Cells/drug effects , Hydrochloric Acid/toxicity , Metal Nanoparticles/toxicity , A549 Cells , Cell Survival/drug effects , Crystallization , Humans , Particle Size
19.
Viruses ; 11(1)2018 12 26.
Article in English | MEDLINE | ID: mdl-30587835

ABSTRACT

Since the largest 2014⁻2016 Ebola virus disease outbreak in West Africa, understanding of Ebola virus infection has improved, notably the involvement of innate immune mediators. Amongst them, collectins are important players in the antiviral innate immune defense. A screening of Ebola glycoprotein (GP)-collectins interactions revealed the specific interaction of human surfactant protein D (hSP-D), a lectin expressed in lung and liver, two compartments where Ebola was found in vivo. Further analyses have demonstrated an involvement of hSP-D in the enhancement of virus infection in several in vitro models. Similar effects were observed for porcine SP-D (pSP-D). In addition, both hSP-D and pSP-D interacted with Reston virus (RESTV) GP and enhanced pseudoviral infection in pulmonary cells. Thus, our study reveals a novel partner of Ebola GP that may participate to enhance viral spread.


Subject(s)
Ebolavirus/chemistry , Glycoproteins/chemistry , Hemorrhagic Fever, Ebola/immunology , Pulmonary Surfactant-Associated Protein D/chemistry , Animals , Chlorocebus aethiops , Collectins/chemistry , Ebolavirus/drug effects , HEK293 Cells , Host Microbial Interactions , Humans , Immunity, Innate , Protein Binding , Pulmonary Surfactant-Associated Protein D/genetics , Swine , Vero Cells , Viral Proteins/chemistry
20.
Health Phys ; 115(1): 37-48, 2018 07.
Article in English | MEDLINE | ID: mdl-29787429

ABSTRACT

The cutaneous radiation syndrome is the clinical consequence of local high-dose irradiation. It is characterized by extensive inflammation, necrosis, and poor revascularization of the skin, resulting in muscle inflammation and fibrosis. Based on these physiopathological processes, subcutaneous injections of adipose-tissue-derived stem/stromal cells have shown favorable effects on skin-wound healing in a minipig model of cutaneous radiation syndrome, in which muscle fibrosis persisted. Since fibrosis is mainly due to the inflammatory processes that often affect underlying tissues as well, the beneficial effects of intramuscular injections of adipose-tissue-derived stem/stromal cells on tissue recovery were evaluated. The polarization of the inflammatory response of irradiated muscle in a minipig model of cutaneous radiation syndrome was determined after acute local irradiation with 50 Gy gamma rays in a preliminary study (six minipigs). Analysis of the main inflammatory cytokines of the inflammatory response M1 (IL-1-beta and IL-6) and M2 (IL-10 and TGF-beta) by western blotting and in situ hybridization, as well as analysis of CD80/CD206 M1/M2 macrophage-specific markers by immunohistochemistry on minipig muscle samples, was performed 76 d after irradiation. The treatment of irradiated muscles with autologous adipose-tissue-derived stem/stromal cells led to an increase in IL-10 and TGF-beta, being associated with an increase in CD68+/CD206+ cells in this area. This highlights a polarization of M2 in the inflammatory response and indicates that adipose-tissue-derived stem/stromal cells may direct the irradiated tissues' inflammatory response towards a proregenerative outcome.


Subject(s)
Adipose Tissue/cytology , Inflammation/immunology , Infrared Rays/adverse effects , Muscle, Skeletal/radiation effects , Radiation Injuries/immunology , Skin Diseases/immunology , Stem Cell Transplantation/methods , Stem Cells/cytology , Animals , Cells, Cultured , Female , Inflammation/etiology , Inflammation/therapy , Muscle, Skeletal/immunology , Muscle, Skeletal/injuries , Radiation Injuries/etiology , Radiation Injuries/therapy , Skin Diseases/etiology , Skin Diseases/therapy , Swine , Swine, Miniature , Wound Healing/immunology
SELECTION OF CITATIONS
SEARCH DETAIL