Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
RSC Adv ; 14(33): 24287-24321, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39104563

ABSTRACT

Acne is a long-standing skin condition characterized by plugged hair follicles due to the accumulation of dead skin cells, sebum, and Propionibacterium acnes (P. acnes) bacteria, causing inflammation, and the formation of pimples or lesions. Acne was recognized in the ancient times by the ancient Egyptians, Greeks, and Romans. Since ancient times, folk medicine from different cultures have comprised herbal and natural products for the treatment of acne. Current acne medications include antibiotics, keratolytics, corticosteroids, in addition to hormonal therapy for women. However, these conventional drugs can cause some serious side effects. And therefore, seeking new safe treatment options from natural sources is essential. Plants can be a potential source of medicinal phytochemicals which can be pharmacologically active as antibacterial, antioxidant, anti-inflammatory, keratolytic and sebum-reducing. Organic acids, obtained from natural sources, are commonly used as keratolytics in dermatology and cosmetology. Most of the promising phytochemicals in acne treatment belong to terpenes, terpenoids, flavonoids, alkaloids, phenolic compounds, saponins, tannins, and essential oils. These can be extracted from leaves, bark, roots, rhizomes, seeds, and fruits of plants and may be incorporated in different dosage forms to facilitate their penetration through the skin. Additionally, medicinal compounds from marine sources can also contribute to acne treatment. This review will discuss the pathogenesis, types and consequences of acne, side effects of conventional treatment, current possible treatment options from natural sources obtained from research and folk medicine and possible applied dosage forms.

2.
J Enzyme Inhib Med Chem ; 39(1): 2367128, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38913598

ABSTRACT

Inhibition of α-glucosidase and α-amylase are key tactics for managing blood glucose levels. Currently, stronger, and more accessible inhibitors are needed to treat diabetes. Indeno[1,2-b] quinoxalines-carrying thiazole hybrids 1-17 were created and described using NMR. All analogues were tested for hypoglycaemic effect against STZ-induced diabetes in mice. Compounds 4, 6, 8, and 16 were the most potent among the synthesised analogues. These hybrids were examined for their effects on plasma insulin, urea, creatinine, GSH, MDA, ALT, AST, and total cholesterol. Moreover, these compounds were tested against α-glucosidase and α-amylase enzymes in vitro. The four hybrids 4, 6, 8, and 16 represented moderate to potent activity with IC50 values 0.982 ± 0.04, to 10.19 ± 0.21 for α-glucosidase inhibition and 17.58 ± 0.74 to 121.6 ± 5.14 µM for α-amylase inhibition when compared to the standard medication acarbose with IC50=0.316 ± 0.02 µM for α-glucosidase inhibition and 31.56 ± 1.33 µM for α-amylase inhibition. Docking studies as well as in silico ADMT were done.


Subject(s)
Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Quinoxalines , Thiazoles , alpha-Amylases , alpha-Glucosidases , Quinoxalines/pharmacology , Quinoxalines/chemistry , Quinoxalines/chemical synthesis , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/chemical synthesis , Animals , Mice , Structure-Activity Relationship , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Molecular Structure , Thiazoles/chemistry , Thiazoles/pharmacology , Thiazoles/chemical synthesis , Diabetes Mellitus, Experimental/drug therapy , Streptozocin , Halogenation , Male , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis
3.
Heliyon ; 10(1): e23189, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38332863

ABSTRACT

[This corrects the article DOI: 10.1016/j.heliyon.2021.e08117.].

4.
AMB Express ; 13(1): 126, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946062

ABSTRACT

Quorum sensing inhibitor (QSI) has been attracting attention as anti-virulence agent which disarms pathogens of their virulence rather than killing them. QSI marking cyclic peptide-mediated QS in Gram-positive bacteria is an effective tool to overcome the crisis of antibiotic-dependent chemotherapy due to the emergence of drug resistance strain, e.g., methicillin resistant Staphylococcus aureus (MRSA) and Vancomycin resistant Enterococci (VRE). From a semi-large-scale screening thus far carried out, two Epoxide compounds, Ambuic acid and Synerazol, have been found to efficiently block agr and fsr QS systems, suggesting that the Epoxide group is involved in the mode of action of these QSIs. To address this notion, known natural Epoxide compounds, Cerulenin and Fosfomycin were examined for QSI activity for the agr and fsr systems in addition to in silico and SAR studies. As a result, most of investigated Epoxide containing antibiotics correlatively interfere with QSI activity for the agr and fsr systems under sublethal concentrations.

5.
Bioorg Chem ; 131: 106307, 2023 02.
Article in English | MEDLINE | ID: mdl-36481380

ABSTRACT

Multi-drug resistant microbes have become a severe threat to human health and arise a worldwide concern. A total of fifteen spiro-1,3-dithiinoindenoquinoxaline derivatives 2-7 were synthesized and evaluated for their biological activities against five standard and MDRB pathogens. The MIC and MBC/MFC for the most active derivatives were determined in vitro via broth microdilution assay. These derivatives showed significant activity against the tested strains with microbicidal behavior, with compound 4b as the most active compound (MIC range between 0.06 and 0.25 µg/mL for bacteria strains and MIC = 0.25 µg/mL for C. albicans). The most active spiro-1,3-dithiinoindenoquinoxaline derivatives were able to inhibit the activity of SrtA with IC50 values ranging from 22.15 ± 0.4 µM to 37.12 ± 1.4 µM. In addition, the active spiro-1,3-dithiinoindenoquinoxaline attenuated the in vitro virulence-related phenotype of SrtA by weakening the adherence of S. aureus to fibrinogen and reducing the biofilm formation. Surprisingly, compound 4b revealed potent SrtA inhibitory activity with IC50 = 22.15 µM, inhibiting the adhesion of S. aureus with 39.22 ± 0.15 % compared with untreated 9.43 ± 1.52 %, and showed a reduction in the biofilm biomass of S. aureus with 32.27 ± 0.52 %. We further investigated the effect of gamma radiation as a sterilization method on the microbial load and found that a dose of 5 kGy was sufficient to eradicate the microbial load. The quantum chemical studies exhibited that the tested derivatives have a small energy band gap (ΔE = -2.95 to -3.61 eV) and therefore exert potent bioactivity by interacting with receptors more stabilizing.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Humans , Quinoxalines/pharmacology , Bacterial Proteins , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
6.
Bioorg Chem ; 127: 105968, 2022 10.
Article in English | MEDLINE | ID: mdl-35728289

ABSTRACT

Vascular Endothelial Growth Factor II (VEGFR-2) has been proved as a rational target in cancer therapy. Although currently prescribed VEGFR-2 inhibitors are showing potent antitumor activity, they are often causing serious unwanted effects, restricting their extensive use as chemotherapeutics. Herein, after analyzing the structures of the effective VEGFR-2 inhibitor molecules, we report the synthesis of a new set of semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles with expected potency of inhibiting the VEGFR-2 signaling. The design of new compounds considered maintaining the essential pharmacophoric features of sorafenib for effective binding with the receptor target. All compounds have been evaluated for their growth inhibition effect against a panel of sixty cancer cells at the National Cancer Institute. Leukemia cancer cells, especially HL-60 and SR, were shown to be the most sensitive to the cytotoxic effect of new compounds. Thiosemicarbazones 21, 26, and 30 exhibited the best activity against almost all tested cancer cells. Therefore, a set of subsequent in vitro biological evaluations has been performed to understand the mechanistic effect of these compounds further. They inhibited the VEGFR-2 with IC50 values of 0.128, 0.413, and 0.067 µM respectively compared with 0.048 µM of Sorafenib. The probable mechanistic effect of 30 has been further evaluated on a number of apoptotic and antiapoptotic markers including BAX, BCL2, caspase-3, and caspase-9. Results revealed the potential of the thiosemicarbazone-linked triazole 30 to induce both the early and the late apoptosis, elevate BAX/BCL2 ratio, induce caspase-3 & caspase-9, and arrest the HL-60 cell cycle at the G2/M and G0-G1 phases. Molecular docking of new semicarbazones and thiosemicarbazones into the proposed biological target receptor has also been performed. Results of docking studies proved the potential of new semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles to effectively bind with crucial residues of the VEGFR-2 binding pocket.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid , Semicarbazones , Thiosemicarbazones , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Caspase 9/metabolism , Cell Cycle , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Sorafenib/pharmacology , Structure-Activity Relationship , Thiosemicarbazones/chemistry , Triazoles/chemistry , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2 , bcl-2-Associated X Protein/metabolism
7.
Bioorg Chem ; 123: 105762, 2022 06.
Article in English | MEDLINE | ID: mdl-35358822

ABSTRACT

Leukemia is a life-threatening nonepithelial malignant disorder that is characterized by uncontrolled growth of the hematopoietic cells. To date, there are still unmet needs for effective and less toxic medication for the management of this malignant tumor. Here, we report the synthesis of a new set of suggested anticancer molecules by joining the 1,2,3-triazole and chalcone privileged fragments in one scaffold to develop novel candidates in leukemia therapy. All the synthesized compounds have been screened for their cytotoxicity effect against a panel of 60 cancer cell lines at the National Cancer Institute. The leukemia cancer cells were found to be the most sensitive toward the effect of new molecules. A subsequent set of in vitro biological evaluation studies has been conducted on the most promising derivatives to identify their effect on such a cancer type. Four derivatives (11b, 11e, 11h, and 11j) showed excellent anticancer activity in the RPMI-8226 cells with IC50 values at low micromolar concentrations. Among these compounds, 11e was the most effective with an IC50 value of 3.17 µM (32-folds stronger than Staurosporine). The potential mechanistic effect of the latter has been further studied through the investigation of its potential effect on the cell cycle, PARP-1, and certain apoptotic and anti-apoptotic markers in the RPMI-8226 cells. Results of those studies revealed the potential of 11e to induce apoptosis through the upregulation of BAX, caspase-3, and caspase-9, and to arrest the cell cycle at the S phase.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Leukemia , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Chalcone/pharmacology , Chalcones/pharmacology , Drug Screening Assays, Antitumor , Humans , Leukemia/drug therapy , Molecular Docking Simulation , Molecular Structure , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Structure-Activity Relationship , Triazoles/pharmacology
8.
Metabolites ; 12(3)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35323689

ABSTRACT

Anti-virulence agents are non-bacteriostatic and non-bactericidal emerging therapeutic options which hamper the production of virulence factors in pathogenic flora. In Staphylococcus aureus and Enterococcus faecalis, regulation of virulence genes' expression occurs through the cyclic peptide-mediated accessory gene regulator (agr) and its ortholog fsr quorum sensing systems, respectively. In the present study, we screened a set of 54 actinomycetales secondary metabolites as novel anti-virulence compounds targeting quorum sensing system of the Gram-positive bacteria. The results indicated that four compounds, Phenalinolactones A-D, BU-4664LMe, 4,5-dehydrogeldamycin, and Questinomycin A, potentially inhibit the agr quorum sensing system and hemolytic activity of S. aureus. On the other hand, Decatromicin A and B, Okilactomycin, Rishirilide A, Abyssomicin I, and Rebeccamycin selectively blocked the fsr quorum sensing system and the gelatinase production in E. faecalis at sub-lethal concentrations. Interestingly, Synerazol uniquely showed the capability to inhibit both fsr and agr quorum sensing systems. Further, in silico molecular docking studies were performed which provided closer insights into the mode of action of these compounds and proposed that the inhibitory activity of these compounds could be attributed to their potential ability to bind to the ATP-active site of S. aureus AgrA. Taken together, our study highlights the potential of actinomycetales secondary metabolites with diverse structures as anti-virulence quorum sensing inhibitors.

9.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35337173

ABSTRACT

The first outbreak in Wuhan, China, in December 2019 was reported about severe acute coronaviral syndrome 2 (SARS-CoV-2). The global coronavirus disease 2019 (COVID-19) pandemic in 2020 resulted in an extremely high potential for dissemination. No drugs are validated in large-scale studies for significant effectiveness in the clinical treatment of COVID-19 patients, despite the worsening trends of COVID-19. This study aims to design a simple and efficient cyclo-condensation reaction of 6-aminouracil derivatives 2a-e and isatin derivatives 1a-c to synthesize spiro-oxindoles 3a-d, 4a-e, and 5a-e. All compounds were tested in vitro against the SARS-CoV-2. Four spiro[indoline-3,5'-pyrido[2,3-d:6,5-d']dipyrimidine derivatives 3a, 4b, 4d, and 4e showed high activities against the SARS-CoV-2 in plaque reduction assay and were subjected to further RNA-dependent-RNA-polymerase (RdRp) and spike glycoprotein inhibition assay investigations. The four compounds exhibited potent inhibitory activity ranging from 40.23 ± 0.09 to 44.90 ± 0.08 nM and 40.27 ± 0.17 to 44.83 ± 0.16 nM, respectively, when compared with chloroquine as a reference standard, which showed 45 ± 0.02 and 45 ± 0.06 nM against RdRp and spike glycoprotein, respectively. The computational study involving the docking studies of the binding mode inside two proteins ((RdRp) (PDB: 6m71), and (SGp) (PDB: 6VXX)) and geometrical optimization used to generate some molecular parameters were performed for the most active hybrids.

10.
Arch Pharm (Weinheim) ; 355(5): e2100454, 2022 May.
Article in English | MEDLINE | ID: mdl-35174895

ABSTRACT

Cancer is the world's foremost cause of death. There are over 100 different forms of cancer. Cancers are frequently named after the organs or tissues in which they develop. As a part of our aim to develop promising anticancer agents, a series of new indeno[1,2-b]quinoxaline derivatives were synthesized. All of the synthesized compounds were tested for anticancer activity in vitro in three human cancer cell lines: the HCT-116 colon cancer cell line, the HepG-2 liver cancer cell line, and the MCF-7 breast cancer cell line. Among the tested derivatives, 2, 3, 5, 12, 21, and 22 showed exceptional antiproliferative activities against the three tested cell lines compared to the reference standard imatinib. These compounds were, therefore, selected for further investigations. Evaluation of their cytotoxicity against a normal human cell line (WI-38) was performed, to ensure their safety and selectivity (IC50 > 92 µM). Then, induction of apoptosis by the most active compounds was found to be accomplished by downregulation of Bcl-2 and upregulation of BAX and caspase-3. After that, the most promising apoptotic compound that increases the caspase-3 and BAX expression and downregulates Bcl-2 activity (3) was assessed for its impact on the cell cycle distribution in HepG-2 cells: The most potent derivative (3) induced cell cycle arrest at the G2/M phase. Finally, in silico evaluation of the ADME properties indicated that compound 3 is orally bioavailable and can be readily synthesized on a large scale.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Drug Screening Assays, Antitumor , Humans , Quinoxalines/pharmacology , Structure-Activity Relationship , Up-Regulation , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology
11.
Mol Divers ; 26(1): 341-363, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33895960

ABSTRACT

Several coumarin-containing substitute nitrogen heterocycles have recently received considerable importance due to their diverse pharmacological properties. One-pot and rapid synthesis of coumarin derivatives was achieved via reactions of acetyl-coumarin with p-chloro-benzaldehyde and malononitrile to provide compound 2-containing cyano-amine using conventional heating. Compound 2 was condensed with different carbon electrophiles triethyl orthoformate, phenyl isocyanate, carbon disulfide, benzoyl chloride, and acetyl chloride that afforded the corresponding chromene derivatives 3-17. All the newly synthesized compounds were characterized by elemental and spectroscopic evidences. All of the synthesized compounds were tested for antimicrobial activity against S. Pneumoniae, S. Epidermidis, S. Aureus, and E. coli as Gram + ve Bacteria, K. Pneumoniae, S. Paratyphi as Gram -ve Bacteria, P. Italicum, A. Fumigatus representative for Fungi. The preliminary screening results showed that most of the compounds had moderate to high activity against all tested organisms. The most potent four compounds were subjected to further investigation against E. Coli DNA gyrase and topoisomerase IV inhibitory activity, and the results showed that all of these derivatives inhibit DNA gyrase and thus cell division. Also, in silico studies were done for the most active compounds which showed good results.


Subject(s)
Anti-Infective Agents , Topoisomerase II Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Coumarins/chemistry , DNA Gyrase/chemistry , Escherichia coli , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
12.
Heliyon ; 7(10): e08117, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34693052

ABSTRACT

Tetrahydroquinoline (THQ) is an important structure for synthesizing multiple biologically active derivatives. Thus, we developed new quinoline derivatives and investigated them as anticancer agents. First, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and other techniques were used to confirm the structure of synthesized compounds. Then, they were assessed in vitro against three human cancer cell lines. Consequently, four compounds, 10, 13, 15, and 16, were identified as promising anticancer agents with pyrazolo quinoline derivative (15) exhibiting the highest potential IC50 and a strong apoptotic effect on three cell lines.

13.
Bioorg Chem ; 116: 105300, 2021 11.
Article in English | MEDLINE | ID: mdl-34525393

ABSTRACT

Based on the biological importance of the thiazole nucleus, we decided to prepare and evaluate the biological activity of some new isatin derivatives containing thiazole moiety. The 5-(piperidin-1-ylsulfonyl)indoline-2,3-dione (1) was prepared and used as a starting material in the synthesis of many isatin derivatives for anticonvulsant evaluation. All the newly synthesized thiazlidino/thiosemicarbazide-indolin-2-one derivatives screened in vivo for their anticonvulsant activity against pentylenetetrazole-induced convulsions in mice. The results were compared with phenobarbitone sodium as a standard anticonvulsant drug. Most of the tested compounds exhibited anticonvulsant activity with relative potency ranging from 0.02 to 0.2 in comparison to standard drug phenobarbitone. The most active compounds 3, 6a, 6c and 8, were exposed to further investigations in rats to evaluate the effect of most active derivatives on the haematological, liver, kidney functions as well as histopathological studies of the liver and kidney tissues. Finally, the most potent compounds 3, 6a, 6c and 8 observed good toxic properties for both liver and kidney function with mild variability changes on RBCs, WBCs, Platelets, Hb, AST, ALT, and creatinine level, as well as kidney and liver tissue and these good results obtained rather than used low dose from phenobarbitone.


Subject(s)
Anticonvulsants/pharmacology , Seizures/drug therapy , Animals , Anticonvulsants/chemical synthesis , Anticonvulsants/chemistry , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Injections, Intraperitoneal , Male , Mice , Molecular Structure , Oxindoles/chemistry , Oxindoles/pharmacology , Pentylenetetrazole/administration & dosage , Piperidines/chemistry , Piperidines/pharmacology , Seizures/chemically induced , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology
14.
Bioorg Chem ; 116: 105339, 2021 11.
Article in English | MEDLINE | ID: mdl-34530234

ABSTRACT

Microbial resistance is a big concern worldwide, making the development of new antimicrobial drugs difficult. The thiazole and pyrazole rings are important heterocyclic compounds utilized to produce a variety of antimicrobial medications. As a result, a series of new bis-thiazolyl-pyrazole derivatives 3, 4a-c, 5a, b, and 6a-c was synthesized by reacting bis hydrazonoyl bromide with several active methylene reagents in a one-pot reaction. The assigned structure was characterized entirely based on elemental and spectral analyses. The antimicrobial activity represented by MIC was performed using a resazurin-based turbidimetric (TB) assay. The results exhibited good antimicrobial activity against gram-positive strains, especially S. aureus (ATCC6538) while showing poor to moderate activity against gram-negative and fungal strains. Furthermore, the most active derivatives 3, 4a, 4c, and 5b were evaluated for MIC, MBC, antibiofilm, hemolytic assay, and drug combination testing against two S. aureus (ATCC6538) and MRSA (ACL18) strains. Additionally, bis-thiazolyl pyrazole 3, 4c, and 5b exhibited more potent inhibitory activity for DHFR with IC50 values (6.34 ± 0.26, 7.49 ± 0.28, and 3.81 ± 0.16 µM), respectively, compared with Trimethoprim (8.34 ± 0.11 µM). The bis-1-(substituted-thiazol-2-yl)-1H-pyrazole-4-carbonitrile derivative 5b was the most active member with MIC values ranging from (0.12-0.25 µM) compared to Vancomycin (1-2 µM), and MBC values ranging from (0.5-1 µM) for S. aureus (ATCC6538) and MRSA (ACL18). Surprisingly, compound 5b displayed bactericidal behavior, synergistic effect with three commercial antibiotics, and inhibited DHFR with 2.1 folds higher than Trimethoprim. Finally, good findings were obtained from in silico investigations incorporating toxicity prediction and molecular docking simulation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Biofilms/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship
15.
Bioorg Chem ; 110: 104803, 2021 05.
Article in English | MEDLINE | ID: mdl-33761314

ABSTRACT

One of the best ways to design new biocidal agents is synthesizing hybrid molecules by combining two or more bioactive moieties in a single molecular scaffold. So, new series of quinolines bearing a thiazole moiety were synthesized using thiosemicarbazones 2a-f. Cyclization of 2a-f with ethyl chloroacetate, ethyl 2-chloropropanoate or chloroacetone afforded the corresponding thiazoles 3-5. The antimicrobial activity of the new quinoline derivatives was evaluated. The most of tested compounds revealed potent both of the antibacterial and antifungal activities. Fourfold potency of amphotericin B for the inhibition the growth of the A. fumigatus was displayed by ccompound 5e. The latter compound displayed twofold potency of gentamycin for inhibition the growth of N. gonorrhoeae. Moreover, this compound showed equipotent potency of references drugs for inhibition of the growth of S. flexneri, S. pyogenes, P. vulgaris, A. clavatus, G. candidum and P. marneffei. So, quinolines bearing a thiazole moiety can be suggested as interesting scaffolds for the development both of the novel antibacterial and antifungal agents. Some new derivatives were studied as peptide deformylase enzyme inhibitors. Thiazolidin-4-one derivative 3d and 2,3-dihydrothiazole derivative 5c had shown good PDF inhibition activity, which had been supported by the docking results with highest binding affinity and lowest docking energy score. These results suggested that the most potent compounds might be possible agents as novel bacterial PDF inhibitor.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/drug effects , Fungi/drug effects , Quinolines/pharmacology , Thiazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Quinolines/chemistry , Structure-Activity Relationship , Thiazoles/chemistry
16.
Bioorg Chem ; 109: 104742, 2021 04.
Article in English | MEDLINE | ID: mdl-33647742

ABSTRACT

Throughout this study, we present the victorious synthesis of a novel class of 2(1H)-pyridone molecules, bearing a 4-hydroxyphenyl moiety through a one-pot reaction of 2-cyano-N-(4-hydroxyphenyl)acetamide with cyanoacetamide, acetylacetone or ethyl acetoacetate, and their corresponding aldehydes. In addition, the chromene moiety was introduced into the pyridine skeleton through the cyclization of the cyanoacetamide 2 with salicylaldehyde, followed by treatment with malononitrile, ethyl cyanoacetate, and cyanoacetamide, in order to improve their biological behaviour. Due to their anti-inflammatory, ulcerogenic, and antipyretic characters, the target molecules have undergone in-vitro and in-vivo examination, that display promising results. Moreover, in order to predict the physicochemical and ADME traits of all synthesized compounds and standard reference drugs, paracetamol and phenylbutazone, the in-silico prediction methodology was provided.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Ulcer Agents/pharmacology , Antipyretics/pharmacology , Edema/drug therapy , Fever/drug therapy , Pyridones/pharmacology , Stomach Ulcer/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Ulcer Agents/chemical synthesis , Anti-Ulcer Agents/chemistry , Antipyretics/chemical synthesis , Antipyretics/chemistry , Dose-Response Relationship, Drug , Edema/metabolism , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Male , Molecular Structure , Pyridones/chemical synthesis , Pyridones/chemistry , Rats , Saccharomyces cerevisiae/drug effects , Stomach Ulcer/pathology , Structure-Activity Relationship
17.
Bioorg Chem ; 100: 103951, 2020 07.
Article in English | MEDLINE | ID: mdl-32450392

ABSTRACT

In this study, anti-proliferative effects of twenty-seven indeno[1,2-b]quinoxalin-11-one derivatives were investigated in three human cancer cell lines, namely: the colon cancer cell line HCT-116, the liver cancer cell line HepG-2, and the breast cancer cell line MCF-7. Among them, 5, 6, 13, 14a, b and 15d-f derivatives displayed excellent anti-proliferative activities against the three tested cell lines compared to the reference standard Imatinib. Therefore, they were selected for further studies. First, to ensure the safety of our hits, investigation of the IC50 values on normal human cells (WI-38) was executed indicating that, they are highly selective (IC50 > 107 µM) in their cytotoxic effect. Second, the induction of apoptosis by these active compounds was achieved by down-regulation of Bcl-2 and up-regulation of BAX and caspase-3. Further investigations have shown that 14b and 15f, the most potent derivatives, induced cell cycle arrest at G2/M phase. Moreover, in silico evaluation of ADME properties indicated that all the potent compounds are orally bioavailable with no permeation to the blood brain barrier.


Subject(s)
Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Drug Design , Quinoxalines/chemistry , Thiazoles/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , G2 Phase Cell Cycle Checkpoints/drug effects , Half-Life , Humans , M Phase Cell Cycle Checkpoints/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Up-Regulation/drug effects
18.
Bioorg Chem ; 99: 103841, 2020 06.
Article in English | MEDLINE | ID: mdl-32325335

ABSTRACT

A series of thiadiazino[5,6-b]quinoxaline and thiazolo[4,5-b]quinoxaline derivatives was designed and synthetized from the reaction of 2,3-dichloro-6-(morpholinosulfonyl)quinoxaline (2) with thiosemicarbazide or thiocarbohydrazide and thiourea derivatives to give nineteen quinoxaline derivatives 3-16. All the synthesized compounds were evaluated for in vitro antimicrobial potential against various bacteria and fungi strains that showed considerable antimicrobial activity against tested microorganisms. The most potent compounds 2, 7, 9, 10, 12 and 13c were exhibited bactericidal activity, in addition to fungistatic activity by dead live assay. Moreover, these compounds showed a significant result against all multi-drug resistance (MDRB) used especially compound 13c that displayed the best results with MICs of MDRB (1.95, 3.9, 2.6, 3.9 µg/mL) for stains used in this study, compared with Norfloxacin (1.25, 0.78, 1.57, 3.13 µg/mL). Also, cytotoxicity on normal cell (Vero cells ATCC CCL-81) by MTT assay was performed with lower toxicity results. Additionally, morphological studies, immunostimulatory potency and DNA gyrase inhibition assay of most active compounds was done. A molecular docking study has also been carried out to support the effective binding of the most promising compounds at the active site of the target enzyme S. aureus DNA gyrase (2XCT).


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , DNA Gyrase/metabolism , Quinoxalines/pharmacology , Thiadiazines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Candida albicans/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Design , Fusarium/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/enzymology , Humans , Microbial Sensitivity Tests , Molecular Structure , Quinoxalines/chemistry , Structure-Activity Relationship , Thiadiazines/chemistry , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Vero Cells
19.
Mol Divers ; 23(1): 165-181, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30099687

ABSTRACT

3,5-Diamino-4-(3-trifluoromethylphenyldiazenyl)-1H-pyrazole was used as a starting scaffold for the synthesis of new pyrazole-based heterocycles to study their effects on the proliferation of three human cancer cell lines; human liver carcinoma cell line (HepG-2), colon cancer cell line (HCT-116) and human breast cancer cell line (MCF-7) using MTT assay. The synthesized compounds were characterized on the basis of IR, 1H NMR, 13C NMR, mass spectral data and elemental analysis results. Cytotoxicity assay results revealed that some of the compounds showed potent growth inhibition against all the cell lines tested, with IC50 values in the range of 0.64-7.73 µg/mL. Breast cancer cells were used for further detailed studies to understand the mechanism of cell growth inhibition and apoptosis-inducing effect of the most active compounds. The results indicated that compounds 3a, 10b and 11a arrested MCF-7 cells at G2/M phase of the cell cycle and might induce apoptosis via caspase-3-dependent pathway. Molecular modeling and binding mode analysis of the most active compounds to caspase 3 active site further provide a synergistic mechanism for their pro-apoptotic effects. In order to explore the structural requirements controlling the observed cytotoxic properties, 3D pharmacophore model was generated.


Subject(s)
Antineoplastic Agents , Heterocyclic Compounds , Pyrazoles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Drug Design , HCT116 Cells , Halogenation , Hep G2 Cells , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , MCF-7 Cells , Models, Molecular , Pyrazoles/chemistry , Pyrazoles/pharmacology
20.
Eur J Med Chem ; 143: 1463-1473, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29113746

ABSTRACT

In an attempt for development of new antimicrobial agents, three series of quinoline derivatives bearing pyrazole moiety have been synthesized. The first series was synthesized through the synthesis of 4-(quinolin-2-yloxy)benzaldehyde and 4-(quinolin-2-yloxy)acetophenone and then treatment with ketone or aldehyde derivatives to afford the corresponding chalcones. Cyclization of the latter chalcones with hydrazine derivatives led to the formation of new pyrazoline derivatives. The second series was synthesized via the synthesis of 2-hydrazinylquinoline and then treatment with formylpyrazoles to afford the corresponding hydrazonyl pyrazole derivatives. The third series was synthesized through the treatment of 2-hydrazinylquinoline with ethoxyethylidene, dithioacetal and arylidene derivatives to afford the corresponding pyrazole derivatives. The synthesized compounds were evaluated for their expected antibacterial and antifungal activities; where, the majority of these compounds showed potent antibacterial and antifungal activities against the tested strains of bacteria and fungi. Pyrazole derivative 13b showed better results when compared with the reference drugs as revealed from their MIC values (0.12-0.98 µg/mL). The pyrazole derivative 13b showed fourfold potency of gentamycin in inhibiting the growth of S. flexneri (MIC 0.12 µg/mL). Also, compound 13b showed fourfold potency of amphotericin B in inhibiting the growth of A. clavatus (MIC 0.49 µg/mL) and C. albicans (MIC 0.12 µg/mL), respectively. The same compound showed twofold potency of gentamycin in inhibiting the growth of P. vulgaris (MIC 0.98 µg/mL), equipotent to the ampicillin and amphotericin B in inhibiting the growth of S. epidermidis (MIC 0.49 µg/mL), A. fumigatus (MIC 0.98 µg/mL), respectively. Thus, these studies suggest that quinoline derivatives bearing pyrazole moiety are interesting scaffolds for the development of novel antibacterial and antifungal agents.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Pyrazoles/chemistry , Quinolines/chemistry , Quinolines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Bacteria/drug effects , Chemistry Techniques, Synthetic , Drug Synergism , Fungi/drug effects , Microbial Sensitivity Tests , Quinolines/chemical synthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL