Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Wound Care ; 33(Sup4a): cxi-cxvii, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38588055

ABSTRACT

OBJECTIVE: Scar tissue formation, as a normal part of wound healing, initiates in the proliferation phase, continues after the remodelling phase, and may cause an unpleasant appearance or disruption in normal functioning. This study investigated the effects of a topical gel on acute wound healing and reducing scars in a rat model. METHOD: ChitoScar (ChitoTech Company, Iran), a commercial scar-reducing gel based on chitosan, was analysed for antibacterial and antiviral activity through a quantitative suspension test. Its cytotoxic effect was investigated, and then irritation and delayed-type hypersensitivity tests were carried out on rabbits through direct application of the gel. Furthermore, the effect of the chitosan-based gel on wound healing and scar tissue formation was studied in rats with an acute wound in two groups: the treatment group (topical application of the chitosan-based gel); and the control group (without treatment). Histopathological examination was carried out based on the inflammatory cells, collagen fibre, keratinocytes and fibroblasts. RESULTS: Analysis revealed that the chitosan-based gel had no cytotoxicity and caused no erythema, oedema, local or other systemic adverse response. Wound healing occurred earlier in the treatment group, which was a result of a significant increase in re-epithelialisation, angiogenesis, fibroblast population and collagen fibre thickness (p<0.05). In the treatment group, wounds healed completely after 21 days and scars totally disappeared after 28 days, while in the control group, wound healing remained incomplete with distinct scar tissue. CONCLUSION: The results demonstrated the positive effect of the chitosan-based gel on the duration and quality of the wound healing process, as well as minimising the scar tissue formation in this in vivo study.


Subject(s)
Chitosan , Cicatrix , Rats , Rabbits , Animals , Chitosan/pharmacology , Chitosan/therapeutic use , Wound Healing , Skin , Collagen/pharmacology
2.
Int J Bioprint ; 9(6)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-38516674

ABSTRACT

Recent advances in additive manufacturing have led to the development of innovative solutions for tissue regeneration. Hydrogel materials have gained significant attention for burn wound treatment in clinical practice among various advanced dressings due to their soothing and moisturizing activity. However, prolonged healing, pain, and traumatic removal due to the lack of long-term wound hydration are some of the challenges in the treatment of second-degree burn wounds. In this study, 3D-printed dressings were fabricated using gelatin, alginate, and bioactive borate glass (BBG) using an extrusion-based bioprinter. After ionic crosslinking, the 3D-printed dressings were characterized for mechanical properties, degradation rate, hydration activity, and in vitro cell viability using human fibroblasts. The results demonstrated that in 3D-printed dressings with 20 wt% BBG, Young's modulus increased by 105%, and 10-day degradation rate decreased by 62%. Addition of BBG prevented the burst release of water from hydrogel dressings and enabled the continuous water release for up to 10 days, which is crucial in treating second-degree burn wounds. 3D-printed hydrogel dressings with BBG showed long-term cell viability that can be a result of the accumulative release of therapeutic ions from BBG particulate. The in vivo wound healing functionality of the dressings was investigated using a rat model with a second-degree burn wound. Our animal study showed that the 3D-printed dressings with BBG exhibited faster wound closure, non-adhesive contact, non-invasive debridement, and non-traumatic dressing removal. Histological analysis suggested that 3D-printed dressings contributed to more uniform re-epithelialization and tissue remodeling compared to the non-printed hydrogels of the same compositions. Critically, 3D-printed dressings with BBG led to significant regeneration of hair follicles compared to the 3D-printed hydrogel, non-printed hydrogel, and the control groups. The superior outcome of the 3D-printed hydrogel-BBG20 dressings can be attributed to the bioactive formulation, which promotes moist wound healing for longer time periods, and the non-adhesive porous texture of the 3D-printed dressings with increased wound-dressing interactions. Our findings provided proof of concept for the synergistic effect of bioactive formulation and the porous texture of the 3D-printed hydrogel dressings incorporated with BBG on continuous water release and, consequently, on second-degree burn wound healing.

3.
Int J Bioprint ; 8(4): 618, 2022.
Article in English | MEDLINE | ID: mdl-36404780

ABSTRACT

Burn wound treatment is still a clinical challenge due to the severity of tissue damage and dehydration. Among various wound dressings, hydrogel materials have gained significant attention for burn wound treatment in clinical practice due to their soothing and moisturizing activity. In this study, 3D-printed dressings were fabricated using clinically relevant hydrogels for deep partial-thickness burn (PTB) wounds. Different ratios of gelatin and alginate mixture were 3D-printed and examined in terms of rheological behavior, shear thinning behavior, mechanical properties, degradation rate, and hydration activity to tune the hydrogel composition for best functionality. The cell-laden dressings were bioprinted to evaluate the effect of the gelatin: alginate ratio on the proliferation and growth of human dermal fibroblasts. The present findings confirm that the higher alginate content is associated with higher viscosity and Young's modulus, while higher gelatin content is associated with faster degradation and higher cell viability. Together, the 3D-printed dressing with 75% gelatin and 25% alginate showed the best tradeoff between mechanical properties, hydration activity, and in vitro biological response. Findings from in vivo test using the most effective dressing showed the positive effect of 3D-printed porous pattern on wound healing, including faster wound closure, regenerated hair follicles, and non-traumatic dressing removal compared to the non-printed hydrogel with the same composition and the standard of care. Results from this research showed that 3D-printed dressings with an adequate gelatin: alginate ratio enhanced wound healing activity for up to 7 days of moisture retention on deep PTB wounds.

4.
Colloids Surf B Biointerfaces ; 158: 697-708, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28778053

ABSTRACT

Incorporating the controlled release of vitamin D3 (VD3) into biodegradable porous scaffolds is a new approach to equipping multifunctional therapeutics for osteoporosis. The current investigation involves the encapsulation of VD3 into gelatin through the one-step desolvation method. The layered double hydroxides-hydroxyapatite nanocomposite (LDH-HAp) and pure LDH were combined with the gelatin-VD3 complex to reinforce the porous biodegradable structure and enhance the biological response. Afterwards, glutaraldehyde was used to form crosslinks within the gelatin chains. The encapsulation efficiency and loading capacity showed approximately 40% and 50% reduction after crosslinking, respectively. The particle size, zeta potential, contact angle, Young's modulus and porosity were measured to find the effect of VD3 on the scaffolds' physiochemical properties. To explore the bioactivity and degradation behavior, the scaffolds were immersed in simulated body fluid. The VD3 release kinetics followed the Korsmeyer-Peppas model and non-Fickian release pattern. The greater osteblastic expression was observed in VD3-containing scaffolds due to the higher alkaline phosphatase activity which was excited more by HAp (P<0.05). Alizarin red staining illustrated that VD3 induced more calcium deposition, which indicates the signaling role of VD3 on osteoconductivity and biomineralization. The findings provide new insights on the VD3 encapsulation within hydrophilic matrices to protect VD3 and enable the signaling ability for bone tissue engineering scaffolds, which could improve the bone healing efficiency.


Subject(s)
Cholecalciferol/chemistry , Durapatite/chemistry , Gelatin/chemistry , Tissue Scaffolds/chemistry , Hydroxides/chemistry , Nanocomposites/chemistry , Tissue Engineering
5.
Mater Sci Eng C Mater Biol Appl ; 76: 701-714, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28482581

ABSTRACT

Developing porous biodegradable scaffolds through simple methods is one of the main approaches of bone tissue engineering (BTE). In this work, a novel BTE composite containing layered double hydroxides (LDH), hydroxyapatite (HA) and gelatin (GEL) was fabricated using co-precipitation and solvent-casting methods. Physiochemical characterizations showed that the chemical composition and microstructure of the scaffolds were similar to the natural spongy bone. Interconnected macropores ranging over 100 to 600µm were observed for both scaffolds while the porosity of 90±0.12% and 92.11±0.15%, as well as, Young's modulus of 19.8±0.41 and 12.5±0.35GPa were reported for LDH/GEL and LDH-HA/GEL scaffolds, respectively. The scaffolds were degraded in deionized water after a month. The SEM images revealed that between two scaffolds, the LDH-HA/GEL with needle-like secondary HA crystals showed better bioactivity. According to the alkaline phosphatase activity and Alizarin red staining results, LDH-HA/GEL scaffolds demonstrated better bone-specific activities comparing to LDH/Gel scaffold as well as control sample (P<0.05). The rabbit adipose stem cells (ASCs) were extracted and cultured, then seeded on the LDH-HA/GEL scaffolds after confluence. Three groups of six adult rabbits were prepared: the scaffold+ASCs group, the empty scaffold group and the control group. The critical defects were made on the left radius and the scaffolds with or without ASCs were implanted there while the control group was left without any treatment. All animals were sacrificed after 12weeks. Histomorphometric results showed that the regeneration of defects was accelerated by scaffold implantation but ASC-seeding significantly improved the quality of new bone formation (P<0.05). The results confirmed the good performance of LDH-HA/GEL scaffold to induce bone regeneration.


Subject(s)
Tissue Engineering , Animals , Bone and Bones , Durapatite , Gelatin , Hydroxides , Porosity , Rabbits , Tissue Scaffolds
6.
Med J Islam Repub Iran ; 29: 238, 2015.
Article in English | MEDLINE | ID: mdl-26793629

ABSTRACT

BACKGROUND: Osteoporosis, or porous bone, is a disease characterized by low bone mass density (BMD) and structural deterioration of bone tissue, leading to bone fragility and increased risk of hip, spine, and wrist fractures. There are numerous risk factors for osteoporosis. While many of these factors are non-genetic in nature, there is a definite genetic component responsible for this condition. The main aim of this study was to evaluate the association between VDR (Vitamin D receptor gene) polymorphisms (Fok1) A>G (rs2228570) and bone mineral density in an Iranian defined population. METHODS: The study participants comprised of 1032 Iranians recruited from the city of Sanandaj during IMOS (Iranian Multi Center Osteoporosis Study). Bone mineral density measurement was performed in all the participants with and without osteoporosis. All samples were genotyped for VDR genes (Fok1) polymorphism with polymerase chain reaction, using a predesigned TaqMan allele discrimination assay. RESULTS: There was a significant association between Fok1 polymorphism and osteoporosis in postmenopausal women, 0.138 (0.025-0.768). CONCLUSION: It seems that cohort studies, which are more powerful than case-control studies, can be useful in evaluating the roles of genetic variants as risk or protective factors for osteoporosis.

7.
J Diabetes Metab Disord ; 13(1): 98, 2014.
Article in English | MEDLINE | ID: mdl-25364703

ABSTRACT

Osteoporosis is a health concern characterized by reduced bone mineral density (BMD) and increased risk of fragility fractures. Many studies have investigated the association between genetic variants and osteoporosis. Polymorphism and allelic variations in the vitamin D receptor gene (VDR) have been found to be associated with bone mineral density. However, many studies have not been able to find this association. Literature review was conducted in several databases, including MEDLINE/Pubmed, Scopus, EMBASE, Ebsco, Science Citation Index Expanded, Ovid, Google Scholar, Iran Medex, Magiran and Scientific Information Database (SID) for papers published between 2000 and 2013 describing the association between Fok1 and Bsm1 polymorphisms of the VDR gene and osteoporosis risk. The majority of the revealed papers were conducted on postmenopausal women. Also, more than 50% studies reported significant relation between Fok1, Bsm1 and osteoporosis. Larger and more rigorous analytical studies with consideration of gene-gene and gene-environment interactions are needed to further dissect the mechanisms by which VDR polymorphisms influence osteoporosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...