Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 293(3): F877-84, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17567939

ABSTRACT

The renal dopamine system plays an important role in sodium homeostasis and a defect in dopamine D1 receptor (D1R) function is present in hypertension, diabetes, and aging. Our previous studies in hyperinsulinemic animals and in renal cell cultures treated with insulin showed decrease in D1R number and defective coupling to G proteins; however, the exact mechanisms remained unknown. Therefore, we investigated insulin-mediated D1R desensitization and underlying molecular mechanism in opossum kidney (OK) cells. Chronic exposure (24 h) of OK cells to 10 nM insulin caused significant decrease in D1R number and agonist affinity. The D1R was hyperserine phosphorylated, uncoupled from G proteins and SKF38393, a D1R agonist, failed to stimulate G proteins and inhibit Na-K-ATPase activity. Insulin increased protein kinase C (PKC) activity and caused G protein-coupled receptor kinase 2 (GRK2) translocation to the membranes. Tyrosine kinase inhibitor genistein and phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin blocked insulin-mediated PKC activation and GRK2 membranous translocation. In addition to genistein and wortmannin, GRK2 membranous tranlocation was also blocked by PKC inhibitor chelerythrine chloride and GRK2-specific siRNA. Genistein, wortmannin, chelerythrine chloride, and GRK2 siRNA abrogated D1R serine phosphorylation and normalized D1R expression and affinity in insulin-treated cells. Furthermore, these inhibitors and siRNA restored D1R G protein coupling and ability of SKF38393 to inhibit Na-K-ATPase activity. In conclusion, insulin-induced D1R desensitization involves PI3K, PKC, and GRK2. Insulin activates PI3K-PKC-GRK2 cascade, causing D1R serine phosphorylation, which leads to D1R downregulation and uncoupling from G proteins, and results in the failure of SKF38393 to stimulate G proteins and inhibit Na-K-ATPase activity.


Subject(s)
Insulin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/metabolism , Receptors, Dopamine D1/metabolism , beta-Adrenergic Receptor Kinases/metabolism , Animals , Cell Line , Gene Expression Regulation , Kidney/cytology , Opossums , Phosphorylation , Protein Transport
2.
J Am Soc Nephrol ; 18(5): 1446-57, 2007 May.
Article in English | MEDLINE | ID: mdl-17409305

ABSTRACT

Renal dopamine, via activation of D1 receptors, plays a role in maintaining sodium homeostasis and BP. There exists a defect in renal D1 receptor function in hypertension, diabetes, and aging, conditions that are associated with oxidative stress. However, the exact underlying mechanism of the oxidative stress-mediated impaired D1 receptor signaling and hypertension is not known. The effect of oxidative stress on renal D1 receptor function was investigated in healthy animals. Male Sprague-Dawley rats received tap water (vehicle) and 30 mM L-buthionine sulfoximine (BSO), an oxidant, with and without 1 mM tempol for 2 wk. Compared with vehicle, BSO treatment caused oxidative stress and increase in BP, which was accompanied by defective D1 receptor G-protein coupling and loss of natriuretic response to SKF38393. BSO treatment also increased NF-kappaB nuclear translocation, protein kinase C (PKC) activity and expression, G-protein-coupled receptor kinase-2 (GRK-2) membranous translocation, and D1 receptor serine phosphorylation. In BSO-treated rats' supplementation of tempol decreased oxidative stress, normalized BP, and restored D1 receptor G-protein coupling and natriuretic response to SKF38393. Tempol also normalized NF-kappaB translocation, PKC activity and expression, GRK-2 sequestration, and D1 receptor serine phosphorylation. In conclusion, these results show that oxidative stress activates NF-kappaB, causing an increase in PKC activity, which leads to GRK-2 translocation and subsequent D1 receptor hyper-serine phosphorylation and uncoupling. The functional consequence of this phenomenon was the inability of SKF38393 to inhibit Na/K-ATPase activity and promote sodium excretion, which may have contributed to increase in BP. Tempol reduced oxidative stress and thereby restored D1 receptor function and normalized BP.


Subject(s)
Hypertension/physiopathology , Kidney/metabolism , NF-kappa B/physiology , Oxidative Stress , Protein Kinase C/physiology , Receptors, Dopamine D1/physiology , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Adenylyl Cyclases/metabolism , Animals , Buthionine Sulfoximine , Cell Membrane/enzymology , Cell Membrane/metabolism , Diuresis/drug effects , Enzyme Activation/drug effects , G-Protein-Coupled Receptor Kinase 2 , Hypertension/chemically induced , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/enzymology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/ultrastructure , Male , Models, Biological , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , Protein Kinase C/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism , beta-Adrenergic Receptor Kinases/metabolism
3.
Hypertension ; 49(3): 664-71, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17200436

ABSTRACT

High salt intake produces vascular changes that contribute to the development of hypertension in salt-sensitive individuals. Because reactive oxygen species play a role in the pathogenesis of cardiovascular diseases, we investigated whether oxidative stress contributes to salt-sensitive hypertension. Sprague-Dawley rats were divided in different groups and received tap water (vehicle), 30 mmol/L of l-buthionine sulfoximine ([BSO] an oxidant), high salt ([HS] 1% NaCl), and BSO plus HS without and with antioxidant tempol (1 mmol/L) in drinking water for 12 days. Compared with vehicle, BSO treatment caused oxidative stress and mild increase in blood pressure. Thoracic aortic rings from BSO-treated rats exhibited decreased response to endothelium-independent vasorelaxants. In HS-treated rats, the response to vasoactive agents, as well as blood pressure, was unaffected. Concomitant treatment of rats with BSO and HS produced a marked increase in blood pressure and a decreased response to both endothelium-dependent and endothelium-independent vasorelaxants with an increase in EC(50). Incubation of aortic tissue from BSO-treated rats with sodium nitroprusside showed decreased cGMP accumulation, whereas HS rats had decreased basal NO synthase activity. Tempol decreased oxidative stress, normalized blood pressure, and restored NO signaling and responses to vasoactive compounds in BSO and BSO plus HS rats. We conclude that BSO increases oxidative stress and reduces NO signaling, whereas HS reduces NO levels by decreasing the NO synthase activity. These phenomena collectively result in reduced responsiveness to both endothelium -dependent and endothelium- independent vasorelaxants and may contribute to salt-sensitive hypertension.


Subject(s)
Blood Pressure/drug effects , Endothelial Cells/drug effects , Oxidative Stress/drug effects , Sodium Chloride, Dietary/pharmacology , Vasodilation/drug effects , Animals , Aorta/physiopathology , Biomarkers , Hypertension/physiopathology , Male , Muscle, Smooth, Vascular , Nitric Oxide/biosynthesis , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL