Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(12): 9149-9154, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-37869980

ABSTRACT

2D materials present an interesting platform for device designs. However, oxidation can drastically change the system's properties, which need to be accounted for. Through ab initio calculations, we investigated freestanding and SiC-supported As, Sb, and Bi mono-elemental layers. The oxidation process occurs through an O2 spin-state transition, accounted for within the Landau-Zener transition. Additionally, we have investigated the oxidation barriers and the role of spin-orbit coupling. Our calculations pointed out that the presence of SiC substrate reduces the oxidation time scale compared to a freestanding monolayer. We have extracted the energy barrier transition, compatible with our spin-transition analysis. Besides, spin-orbit coupling is relevant to the oxidation mechanisms and alters time scales. The energy barriers decrease as the pnictogen changes from As to Sb to Bi for the freestanding systems, while for SiC-supported, they increase across the pnictogen family. Our computed energy barriers confirm the enhanced robustness against oxidation for the SiC-supported systems.

2.
Phys Chem Chem Phys ; 25(2): 1161-1168, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36519443

ABSTRACT

The development of electronic devices based on the functionalization of (nano)cellulose platforms relies upon an atomistic understanding of the structural and electronic properties of a combined system, cellulose/functional element. In this work, we present a theoretical study of the nanocellulose/graphene interfaces (nCL/G) based on first-principles calculations. We find that the binding energies of both hydrophobic/G (nCLphob/G) and hydrophilic/G (nCLphil/G) interfaces are primarily dictated by the van der Waals interactions, and are comparable with those of their 2D interface counterparts. We verify that the energetic preference of nCLphob/G has been reinforced by the inclusion of an aqueous medium via an implicit solvation model. Further structural characterization was carried out using a set of simulations of the carbon K-edge X-ray absorption spectra to identify and distinguish the key absorption features of the nCLphob/G and nCLphil/G interfaces. The electronic structure calculations reveal that the linear energy bands of graphene lie in the band gap of the nCL sheet, while depletion/accumulation charge density regions are observed. We show that external agents, i.e., electric field and mechanical strain, allow for tunability of the Dirac cone and charge density at the interface. The control/maintenance of the Dirac cone states in nCL/G is an important feature for the development of electronic devices based on cellulosic platforms.


Subject(s)
Graphite , Carbon , Cellulose , Electricity , Electronics
3.
Phys Chem Chem Phys ; 23(19): 11501-11506, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33960330

ABSTRACT

Recently cycloarene has been experimentally obtained in a self-assembled structure, forming graphene-like monoatomic layered systems. Here, we established bandgap engineering/prediction in cycloarene assemblies within a combination of density functional theory and tight-binding Hamiltonians. Our results show that the inter-molecule bond density rules the bandgap. The increase in such bond density increases the valence/conduction bandwidth decreasing the energy gap linearly. We derived an effective model that allows the interpretation of the arising energy gap for general particle-hole symmetric molecular arrangements based on inter-molecular bond strength.

4.
Nanoscale ; 13(10): 5270-5274, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33662069

ABSTRACT

A material's geometric structure is a fundamental part of its properties. The honeycomb geometry of graphene is responsible for its Dirac cone, while kagome and Lieb lattices host flat bands and pseudospin-1 Dirac dispersion. These features seem to be particular to a few 2D systems rather than a common occurrence. Given this correlation between structure and properties, exploring new geometries can lead to unexplored states and phenomena. Kepler is the pioneer of the mathematical tiling theory, describing ways of filling the Euclidean plane with geometric forms in his book Harmonices Mundi. In this article, we characterize 1255 lattices composed of k-uniform tiling of the Euclidean plane and unveil their intrinsic properties; this class of arranged tiles presents high-degeneracy points, exotic quasiparticles and flat bands as common features. Here, we present a guide for the experimental interpretation and prediction of new 2D systems.

5.
Phys Chem Chem Phys ; 22(37): 21504-21511, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32955064

ABSTRACT

It has recently been demonstrated that N-heterocyclic carbenes (NHCs) form self-assembled monolayers (SAMs) on metal surfaces. Consequently, it is important to both characterize and understand their binding modes to fully exploit NHCs in functional surface systems. To assist with this effort, we have performed first-principles total energy calculations for NHCs on Au(111) and simulations of X-ray absorption near edge structure (XANES). The NHCs we have considered are N,N-dimethyl-, N,N-diethyl-, N,N-diisopropylbenzimidazolylidene (BNHCX, with X = Me, Et, and iPr, respectively) and the bis-BNHCX-Au complexes derived from these molecules. We present a comprehensive analysis of the energetic stability of both the BNHCX and the complexes on Au(111) and, for the former, examine the role of the wing group in determining the attachment geometry. Further structural characterization is performed by calculating the nitrogen K-edge X-ray absorption spectra. Our simulated XANES results give insight into (i) the relationship between the BNHCX/Au geometry and the N(1s) → π*/σ*, pre-edge/near-edge, absorption intensities, and (ii) the contributions of the molecular deformation and molecule-surface electronic interaction to the XANES spectrum. These simulated spectra work not only as a map to the BNHCX conformation, but also, combined with electronic structure calculations, provide a clear understanding of recent experimental XANES findings on BNHCX/Au.

6.
Phys Chem Chem Phys ; 21(44): 24584-24591, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31664278

ABSTRACT

The electronic transport properties in molecular heterojunctions are intimately connected with the molecular conformation between the electrodes, and the electronic structure of the molecule/electrode interface. In this work, we perform an ab initio density-functional-theory investigation of the structural and transport properties through self-assembled CuPc molecules sandwiched between gold contacts with (111) surfaces. We demonstrated (i) a tunneling regime ruled by the π orbitals of the aromatic rings of CuPc molecules; and (ii) a high variation (up to two orders of magnitude) of the current density with the orientation of the CuPc molecules relative to the gold surface. The source of this variation is the geometrical dependence of the energy of the highest-occupied-molecular-orbital with respect to the chemical potential of the metal and the generation of intra-molecular transport channels for a configuration with CuPc molecules tilted with respect to the gold surface.

7.
J Phys Condens Matter ; 30(8): 085701, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29384136

ABSTRACT

IrGa3 is an intermetallic compound which is expected to be a metal, but a study on the electronic properties of this material to confirm its metallic character is not available in the literature. In this work, we report for the first time a first-principles density functional theory and semiclassical Boltzmann theory study of the structural, electronic and transport properties of this material. The inclusion of the spin-orbit coupling term is crucial to calculate accurately the electronic properties of this compound. We have established that IrGa3 is an indirect semiconductor with a narrow gap of 0.07 eV. From semiclassical Boltzmann transport theory, it is inferred that this material, with the appropriate hole concentration, could have a thermoelectric figure of merit at room temperature comparable to other intermetallic compounds such as FeGa3, though the transport properties of IrGa3 are highly anisotropic.

8.
J Phys Condens Matter ; 29(40): 405002, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28857050

ABSTRACT

Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

9.
J Phys Condens Matter ; 29(30): 305302, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28561008

ABSTRACT

We perform an ab initio study of the electronic structure and magnetic properties of 3d, 4d and 5d transition metals (TM) adsorbed on freestanding and Ag(1 1 1)-supported [Formula: see text]-borophene. The stability of TM adsorption is high for all atoms and increases with the period. For the 3d TM adsorption we observed strong exchange effects. The Ag(1 1 1)-surface induced small effects on the calculated properties. Studying the magnetic interaction between TMs, VIB atoms showed direct exchange, while VIIB and Fe showed 2p(B)-mediated indirect exchange. In the ultimate case of a one-dimensional TM array, Ru and Os also show direct exchange effects.

10.
Sci Rep ; 6: 26123, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27212604

ABSTRACT

We predict a new class of large band gap quantum spin Hall insulators, the fluorinated PbX (X = C, Si, Ge and Sn) compounds, that are mechanically stable two-dimensional materials. Based on first principles calculations we find that, while the PbX systems are not topological insulators, all fluorinated PbX (PbXF2) compounds are 2D topological insulators. The quantum spin Hall insulating phase was confirmed by the explicitly calculation of the Z2 invariant. In addition we performed a thorough investigation of the role played by the (i) fluorine saturation, (ii) crystal field, and (iii) spin-orbital coupling in PbXF2. By considering nanoribbon structures, we verify the appearance of a pair of topologically protected Dirac-like edge states connecting the conduction and valence bands. The insulating phase which is a result of the spin orbit interaction, reveals that this new class of two dimensional materials present exceptional nontrivial band gaps, reaching values up to 0.99 eV at the Γ point, and an indirect band gap of 0.77 eV. The topological phase is arisen without any external field, making this system promising for nanoscale applications, using topological properties.

11.
Nat Commun ; 6: 7630, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26138034

ABSTRACT

Topological insulators are a new class of matter characterized by the unique electronic properties of an insulating bulk and metallic boundaries arising from non-trivial bulk band topology. While the surfaces of topological insulators have been well studied, the interface between topological insulators and semiconductors may not only be more technologically relevant, but the interaction with non-topological states may fundamentally alter the physics. Here, we present a general model to show that this type of interaction can lead to vertical twinning of the Dirac cone, whereby the hybridized non-spin-degenerate interfacial states cross twice as they span the bulk bandgap. This hybridization leads to spin-momentum locking of non-topological states with either helical (clockwise or anticlockwise) or even anti-helical (negative winding number) spin orientation depending on the parametization of the interaction. Model results are corroborated by first-principles calculations of the technologically relevant Bi2Se3 film van der Waals bound to a Se-treated GaAs substrate.

12.
J Phys Condens Matter ; 27(25): 255501, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26045478

ABSTRACT

We have performed an ab initio total energy investigation of the topological phase transition, and the electronic properties of topologically protected surface states of (BixSb1-x)2Se3 alloys. In order to provide an accurate alloy concentration for the phase transition, we have considered the special quasirandom structures to describe the alloy system. The trivial â†’ topological transition concentration was obtained by (i) the calculation of the band gap closing as a function of Bi concentration (x), and (ii) the calculation of the Z2 topological invariant number. We show that there is a topological phase transition, for x around 0.4, verified for both procedures (i) and (ii). We also show that in the concentration range 0.4 < x < 0.7, the alloy does not present any other band at the Fermi level besides the Dirac cone, where the Dirac point is far from the bulk states. This indicates that a possible suppression of the scattering process due to bulk states will occur.

13.
Phys Rev Lett ; 114(6): 066803, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25723237

ABSTRACT

In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

14.
Nanotechnology ; 24(49): 495201, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24231442

ABSTRACT

Graphane, hydrogenated graphene, can be patterned into electronic devices by selectively removing hydrogen atoms. The most simple of such devices is the so-called nanoroad, analogous to the graphene nanoribbon, where confinement-and the opening of a gap-is obtained without the need for breaking the carbon bonds. In this work we address the electronic transport properties of such systems considering different hydrogen impurities within the conduction channel. We show, using a combination of density functional theory and non-equilibrium Green's functions, that hydrogen leads to significant changes in the transport properties and in some cases to current polarization.

15.
J Phys Condens Matter ; 25(44): 445003, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24056032

ABSTRACT

The Dirac surface states of topological insulators are protected by time-reversal symmetry, suppressing backscattering. Magnetic impurities adsorbed on the surface of topological insulators are expected to degrade the coherence of these protected surface states, breaking time-reversal symmetry. Some results are in agreement with this prediction. There are others where no bandgap opening was observed. Here, based upon first principles calculations, we show that one mechanism that plays a key role in these controversial results is the intrinsic carrier concentration. The magnetic phase of Fe-, Co- and Ni-doped Bi2Se3 has been computed and compared to the same systems in the presence of n- or p-type doping. Our results show that the magnetic phase is dependent on both the carrier concentration and the magnetic impurity coverage, resulting in a phase diagram for the existence or not of the protected Dirac states.

16.
Nanoscale ; 5(7): 2798-803, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23440087

ABSTRACT

Carbon nanotubes have been at the forefront of nanotechnology, leading not only to a better understanding of the basic properties of charge transport in one dimensional materials, but also to the perspective of a variety of possible applications, including highly sensitive sensors. Practical issues, however, have led to the use of bundles of nanotubes in devices, instead of isolated single nanotubes. From a theoretical perspective, the understanding of charge transport in such bundles, and how it is affected by the adsorption of molecules, has been very limited, one of the reasons being the sheer size of the calculations. A frequent option has been the extrapolation of knowledge gained from single tubes to the properties of bundles. In the present work we show that such procedure is not correct, and that there are qualitative differences in the effects caused by molecules on the charge transport in bundles versus isolated nanotubes. Using a combination of density functional theory and recursive Green's function techniques we show that the adsorption of molecules randomly distributed onto the walls of carbon nanotube bundles leads to changes in the charge density and consequently to significant alterations in the conductance even in pristine tubes. We show that this effect is driven by confinement which is not present in isolated nanotubes. Furthermore, a low concentration of dopants randomly adsorbed along a two-hundred nm long bundle drives a change in the transport regime; from ballistic to diffusive, which can account for the high sensitivity to different molecules.

17.
Nanotechnology ; 21(34): 345202, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20671366

ABSTRACT

The use of the spin of the electron as the ultimate logic bit-in what has been dubbed spintronics-can lead to a novel way of thinking about information flow. At the same time single-layer graphene has been the subject of intense research due to its potential application in nanoscale electronics. While defects can significantly alter the electronic properties of nanoscopic systems, the lack of control can lead to seemingly deleterious effects arising from the random arrangement of such impurities. Here we demonstrate, using ab initio density functional theory and non-equilibrium Green's functions calculations, that it is possible to obtain perfect spin selectivity in doped graphene nanoribbons to produce a perfect spin filter. We show that initially unpolarized electrons entering the system give rise to 100% polarization of the current due to random disorder. This effect is explained in terms of different localization lengths for each spin channel which leads to a new mechanism for the spin filtering effect that is disorder-driven.

18.
Nano Lett ; 10(4): 1383-6, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20196539

ABSTRACT

An unexpected presence of ferromagnetic (FM) ordering in nanostructured nonmagnetic metal oxides has been reported previously. Though this property was attributed to the presence of defects, systematic experimental and theoretical studies to pinpoint its origin and mechanism are lacking. While it is widely believed that oxygen vacancies are responsible for FM ordering, surprisingly we find that annealing as-prepared samples at low temperature (high temperature) in flowing oxygen actually enhances (diminishes) the FM ordering. For these reasons, we have prepared, annealed in different environments, and measured the ensuing magnetization in micrometer and nanoscale ZnO with varying crystallinity. We further find from our magnetization measurements and ab initio calculations that a range of magnetic properties in ZnO can result, depending on the sample preparation and annealing conditions. For example, within the same ZnO sample we have observed ferro- to para- and diamagnetic responses depending on the annealing conditions. We also explored the effects of surface states on the magnetic behavior of nanoscale ZnO through detailed calculations.


Subject(s)
Magnetics , Nanostructures/chemistry , Zinc Oxide/chemistry , Nanotechnology/methods , Oxygen/chemistry , Particle Size , Quantum Theory , Surface Properties , Temperature
19.
J Phys Chem B ; 113(16): 5376-80, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19368408

ABSTRACT

The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (DFT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.


Subject(s)
Computer Simulation , Electrons , Imides/chemistry , Liquid Crystals/chemistry , Models, Chemical , Perylene/chemistry , Crystallography, X-Ray , Models, Molecular , Perylene/analogs & derivatives , Quantum Theory
20.
J Phys Condens Matter ; 21(1): 012206, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-21817207

ABSTRACT

The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge,looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.

SELECTION OF CITATIONS
SEARCH DETAIL
...