Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biol Trace Elem Res ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472511

ABSTRACT

Lead (Pb) is one of the most common heavy metals with toxicological effects on many tissues in humans as well as animals. In order to counteract the toxic effects of this metal, the administration of synthetic or natural antioxidants is thus required. The aim of this study was to examine the beneficial effect of the aqueous extract of Ononis natrix (AEON) against lead acetate-induced damage from a behavioral, biochemical, and histological point of view. Forty-eight male mice were divided into four equal groups: Ctr (control); Pb (lead acetate 1g/l); Pb + On 100 mg/kg (lead acetate 1 g/l + AEON 100 mg/kg); Pb + On 500 mg/kg (lead acetate 1 g/l + AEON 500 mg/kg). AEON was administered orally from day 21 after the start of lead exposure up to the end of the experiment. The results revealed that lead induced behavioral disorders, increased serum levels of liver markers (AST, ALT, and bilirubin), as well as kidney markers (urea and creatinine). At the same time, levels of thiobarbituric acid reactive substances (TBARS) and glutathione peroxidase (GPx) increased significantly. Moreover, Pb caused structural changes in the liver and kidneys of Pb-exposed mice. However, AEON administration significantly improved all lead-induced brain, liver, and kidney dysfunctions. Our results suggest that AEON could be a source of molecules with therapeutic potential against brain, liver, and kidney abnormalities caused by lead exposure.

2.
Acta Neurobiol Exp (Wars) ; 83(2): 203-215, 2023.
Article in English | MEDLINE | ID: mdl-37493536

ABSTRACT

Hepatic encephalopathy (HE) is a neuropsychiatric hepatic­induced syndrome in which several factors are involved in promoting brain perturbations, with ammonia being the primary factor. Motor impairment, incoordination, and gut dysbiosis are some of the well­known symptoms of HE. Nevertheless, the link between the direct effect of hyperammonemia and associated gut dysbiosis in the pathogenesis of HE is not well established. Thus, this work aimed to assess motor function in hyperammonemia and gut dysbiosis in mice. Twenty­eight Swiss mice were distributed into three groups: two­week and four­week hyperammonemia groups were fed with an ammonia­rich diet (20% w/w), and the control group was pair­fed with a standard diet. Motor performance in the three groups was measured through a battery of motor tests, namely the rotarod, parallel bars, beam walk, and static bars. Microbial analysis was then carried out on the intestine of the studied mice. The result showed motor impairments in both hyperammonemia groups. Qualitative and quantitative microbiological analysis revealed decreased bacterial load, diversity, and ratios of both aerobic and facultative anaerobic bacteria, following two and four weeks of ammonia supplementation. Moreover, the Shannon diversity index revealed a time­dependent cutback of gut bacterial diversity in a treatment­time­dependent manner, with the presence of only Enterobacteriaceae, Streptococcaceae, and Enterococcaceaeat at four weeks. The data showed that ammonia­induced motor coordination deficits may develop through direct and indirect pathways acting on the gut­brain axis.


Subject(s)
Gastrointestinal Microbiome , Hepatic Encephalopathy , Hyperammonemia , Mice , Animals , Hepatic Encephalopathy/complications , Hepatic Encephalopathy/metabolism , Brain-Gut Axis , Dysbiosis/complications , Hyperammonemia/complications , Hyperammonemia/metabolism , Ammonia/toxicity
3.
Mol Genet Metab Rep ; 36: 100984, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37323222

ABSTRACT

Background: Wilson Disease (WD) is an autosomal recessive inherited metabolic disease caused by mutations in the ATP7B gene. WD is characterized by heterogeneous clinical presentations expressed by hepatic and neuropsychiatric phenotypes. The disease is difficult to diagnose, and misdiagnosed cases are commonly seen. Methods: In this study, the presented symptoms of WD, the biochemical parameters as well as its natural history are described based on cases collected in Mohammed VI Hospital University of Marrakech (Morocco). We screened and sequenced 21 exons of ATP7B gene from 12 WD patients that confirmed through biochemical diagnosis. Results: Mutational assessment of the ATP7B gene showed six homozygous mutations in 12 individuals however, 2 patients had no evidence of any mutation in promoter and exonic regions. All mutations are pathogenic and most were missense mutations. c.2507G > A (p.G836E), c.3694A > C (p.T1232P) and c.3310 T > C (p.C1104R) that were identified in 4 patients. The other mutations were a non-sense mutation (c.865C > T (p.C1104R)) detected in 2 patients, a splice mutation (c.51 + 4A > T) detected in 2 patients and a frameshift mutation (c.1746 dup (p.E583Rfs*25) detected in 2 patients. Conclusion: Our study is the first molecular analysis in Moroccan patients with Wilson's disease, the ATP7B mutational spectrum in the Moroccan population is diverse and still unexplored.

4.
Methods Mol Biol ; 2619: 61-69, 2023.
Article in English | MEDLINE | ID: mdl-36662462

ABSTRACT

The growing body of evidence supports the potential of using urinary glycosaminoglycans (uGAGs) levels as biomarkers to guide diagnosis and as predictive biomarkers of treatment efficacy. Recently, studies have shown that, in addition to MPS, the prognosis and treatment of cancers and viral infections, including COVID-19, are enabled by characterization and/or traits by GAGs. Reliable and accessible detection and assay protocols of urinary GAGs are therefore of great support for laboratory workers and clinicians. Here we describe a semiquantitative and quantitative urinary glycosaminoglycans determination using 1,9-dimethylmethylene blue (DMB) and the characterization of uGAGs using thin layer chromatography (TLC).


Subject(s)
COVID-19 , Mucopolysaccharidoses , Humans , Glycosaminoglycans , Mucopolysaccharidoses/diagnosis , COVID-19/diagnosis , Biomarkers , Chromatography, Thin Layer
5.
Food Chem Toxicol ; 171: 113553, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521574

ABSTRACT

Graphene oxide (GO) is a graphene derivative used for numerous applications in which biomedical uses are significant. However, for this application, the security of GO is doubtful. In this work, we synthesized this nanoparticle to assess its toxicity in male mice. In addition, we studied the effects of this nanomaterial on behavior by administering GO intraperitoneally to mice at different doses (2 mg/kg and 5 mg/kg) for five days. Subsequently, we performed biochemical analyses of blood serum and measured peroxidase and malondialdehyde (MDA) activity. Then, we performed histological sections to evaluate the brain's and liver's pathological and morphological changes. The data showed that the open field tests did not alter the locomotor activity. Furthermore, the elevated cross-maze tests showed no anxiety effect in the GO doses in the animals. The biochemical analyses indicated that GO influenced the level of biochemical parameters. Although, the oxidative stress assay showed an increase in peroxidase and MDA activity after GO intoxication. However, histopathological analysis of liver sections showed that GO caused liver inflammation, whereas, at the brain level, GO did not affect neuronal cells. The results indicate that GO caused toxic effects and that its toxicity could be mediated by oxidative stress.


Subject(s)
Graphite , Nanoparticles , Mice , Male , Animals , Oxides , Injections, Intraperitoneal , Oxidative Stress , Peroxidases
6.
Pharm Biol ; 60(1): 879-888, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35634909

ABSTRACT

CONTEXT: Chondroitin 6 sulphate (C6S) is a glycosaminoglycan (GAG) whose accumulation is notable in mucopolysaccharidosis type IVA and VII. Flaxseed, Linum usitatissimum L. (Linaceae) (FS), is reported to have comparable properties to those of soybean, a source of genistein, a potential new treatment for MPSs. OBJECTIVE: We assess the effect of total ethanol flaxseed extract (EFSE) in an animal model of C6S accumulation. MATERIALS AND METHODS: The study was performed in adult male Wistar rats (n = 24) for 15 successive days. The animals were divided into four groups: (1) control injected with physiological saline buffer, (2) intoxicated rats injected intraperitoneally with C6S, (3) intoxicated with C6S and treated with EFSE, and (4) treated with EFSE. All groups were subjected to histopathological and biochemical studies. The antioxidant and phytochemical properties of EFSE were examined. RESULTS: Dry EFSE contains total phenols (6.28 mg EAG/g), condensed tannins (2.98 mg ECAT/g) and flavonoids (0.44 mg ECAT/g) with high antioxidant potential [RPE (IC50 = 8.37 ± 0.176), DPPH (IC50 = 12.79 ± 0.273)]. The LD50 is higher than 5000 mg/kg. The histopathological examination showed an accumulation of C6S in the C6S intoxicated group, which disappeared in the C6S-EFSE treated group. GAGs assays showed an increased excretion in the C6S intoxicated group and increased excretion of 14% in the C6S-EFSE group compared to the C6S group. DISCUSSION AND CONCLUSIONS: EFSE showed significant potential for chelation. Its use for the treatment of GAG accumulation could be suggested and generalized to a larger study population.


Subject(s)
Flax , Mucopolysaccharidoses , Animals , Antioxidants/pharmacology , Chondroitin Sulfates/chemistry , Glycosaminoglycans , Humans , Male , Plant Extracts/pharmacology , Rats , Rats, Wistar
7.
Heliyon ; 8(1): e08799, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35071819

ABSTRACT

The newly emerged 2019 coronavirus disease (COVID-19) has urged scientific and medical communities to focus on epidemiology, pathophysiology, and treatment of SARS-CoV-2. Indeed, little is known about the virus causing this severe acute respiratory syndrome pandemic, coronavirus (SARS-CoV-2). Data already collected on viruses belonging to the coronaviridae family are of interest to improve our knowledge rapidly on this pandemic. The current review aims at delivering insight into the fundamental advances inSARS-CoV-2 epidemiology, pathophysiology, life cycle, and treatment.

8.
J Chem Neuroanat ; 119: 102055, 2022 01.
Article in English | MEDLINE | ID: mdl-34863855

ABSTRACT

Hepatic encephalopathy (HE) is a neurophysiological syndrome secondary to acute or chronic liver failure. Studies showed that HE patients exhibit a deficit in motor coordination, which may result from cerebellar functional impairment. The aim of this study is to assess the time-dependent alteration of locomotor behavior and the glial and neuronal alteration in rat with acute HE induced chemically. The study was carried out in male Sprague-Dawley rats with thioacetamide (TAA) induced acute liver failure at different stages 12 h, 24 h and 36 h. Hepatic and renal functions were assessed via various biochemical and histopathological examinations, while the cerebellum and the midbrain were examined using histology and immunohistochemistry for tyrosine hydroxylase (TH), cyclooxygenase-2 (COX-2) and glial fibrillary acidic protein (GFAP). We used as well, the open field test and the Rotarod test for assessing the locomotor activity and coordination. Our data showed a progressive loss of liver function and a progressive alteration in locomotor behavior and motor coordination in acute HE rats. In the cerebellum, we noted an increase in the degeneration of cerebellar Purkinje neurons parallel to increased COX-2 immunoreactivity together with astrocytic morphology and density changes. Likewise, in substantia nigra pars compacta, TH levels were reduced. We showed through the current study, a progressive deterioration in locomotor behavior in acute HE rats, as a result of Purkinje neurons death and a deficient dopaminergic neurotransmission, together with the morpho-functional astroglial modifications involving the oxidative stress and neuroinflammation.


Subject(s)
Liver Failure, Acute , Neuroinflammatory Diseases , Animals , Astrocytes , Cerebellum , Humans , Liver Failure, Acute/complications , Male , Rats , Rats, Sprague-Dawley
9.
Carbohydr Res ; 498: 108179, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33137585

ABSTRACT

BACKGROUND: A colorimetric microassay for the quantitative determination of galactose in the blood was taken and updated. This method helps in diagnosis and follow-up of several inherited metabolic diseases connected to galactose metabolism deficiency such as galactosemia, glycogenosis, glycosylation, tyrosinemia and citrin deficiency. Galactose assay in the blood presents difficulties due to interference with glucose. In this study, we update a method to get around these difficulties. METHOD: This procedure was based on the incubation of whole blood with orcinol in a strongly acidic solution to form a galactose and glucose complexes able to absorb at two different wavelengths. RESULTS: The standard curve analysis for the individual solutions of these two sugars showed a wide range of linearity from 0 to 200 mg / l. Under optimal experimental conditions, the stirring time of the orcinol is 3 minutes, the heating time of the reaction is 20 minutes at 56 ° C, and the duration of the incubation in the dark is 40 minutes. The analysis is carried out on fresh blood. The maximum absorbance of galactose and glucose is respectively 569 nm and 421 nm. An adapted diagnosis algorithm was developed based on our results. CONCLUSION: this method could help in screening and identifying patients with hypergalactosemia that need further investigations. It could represent a promising method for neonatal screening in countries with limited resources.


Subject(s)
Blood Chemical Analysis/methods , Colorimetry/methods , Galactose/blood , Metabolic Diseases/blood , Metabolic Diseases/diagnosis , Early Diagnosis , Galactose/chemistry , Humans , Infant, Newborn , Metabolic Diseases/genetics , Neonatal Screening , Time Factors
10.
Pediatr Int ; 62(9): 1077-1085, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32357280

ABSTRACT

BACKGROUND: Mucopolysaccharidoses (MPS), a group of inherited metabolic disorders characterized by the accumulation of glycosaminoglycans, can be diagnosed early through newborn screening programs. Establishing newborn screening in Morocco is a challenging task for multiple economic and social reasons. Screening in a Moroccan population using 1,9-dimethylmethylene blue urinary glycosaminoglycan (GAG) assays may allow for an earlier diagnosis of MPS. We studied the feasibility of implementing screening in Moroccan children as an alternative to national newborn screening. We determined the reference ranges for GAGs in the Moroccan population, their stability during transport, the effectiveness of this test as a screening procedure for MPS in patients, and its use as a screening test for MPS in the Imssouane region, where the rate of consanguineous marriage is 38%. METHODS: Using dimethylmethylene blue assays, urine samples of 47 MPS patients were analyzed, together with urine samples from healthy controls (n = 368, age ranging from 1 month to 25 years), and from Imssouane region children (n = 350, age ranging from 6 months to 24 month). Precision, linearity, recovery, limits, and stability were tested. RESULTS: Urinary GAGs reference values are age and ethnicity dependent. The validation parameters established displayed great precision and accuracy leading to recoveries according to internationally accepted values for bioanalytical methods. Urinary GAGs were stable for a maximum of 7 weeks at 40 °C. Screening of Imssouane children resulted in the detection of a 6-month-old child, diagnosed with MPS I. CONCLUSIONS: Our results demonstrate the usefulness of quantifying glycosaminoglycans for early screening of MPS.


Subject(s)
Glycosaminoglycans/urine , Mass Screening/methods , Mucopolysaccharidoses/diagnosis , Adolescent , Adult , Age Factors , Child , Child, Preschool , Early Diagnosis , Female , Humans , Infant , Infant, Newborn , Male , Methylene Blue/analogs & derivatives , Methylene Blue/metabolism , Morocco , Mucopolysaccharidoses/urine , Neonatal Screening/methods , Reference Values , Spectrophotometry , Young Adult
11.
Clin Lab ; 66(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-32162878

ABSTRACT

BACKGROUND: Rapid and accurate diagnosis of mucopolysaccharidoses (MPS) is still a challenge due to poor access to screening and diagnostic methods and to their extensive clinical heterogeneity. The aim of this work is to perform laboratory biochemical testing for confirming the diagnosis of mucopolysaccharidosis (MPS) for the first time in Morocco. METHODS: Over a period of twelve months, 88 patients suspected of having Mucopolysaccharidosis (MPS) were referred to our laboratory. Quantitative and qualitative urine glycosaminoglycan (GAG) analyses were performed, and enzyme activity was assayed on dried blood spots (DBS) using fluorogenic substrates. Enzyme activity was measured as normal, low, or undetectable. RESULTS: Of the 88 patients studied, 26 were confirmed to have MPS; 19 MPS I (Hurler syndrome; OMIM #607014/Hurler-Scheie syndrome; OMIM #607015), 2 MPS II (Hunter syndrome; OMIM #309900), 2 MPS IIIA (Sanfilippo syndrome; OMIM #252900), 1 MPS IIIB (Sanfilippo syndrome; OMIM #252920) and 2 MPS VI (Maroteaux-Lamy syndrome; OMIM #253200). Parental consanguinity was present in 80.76% of cases. Qualitative urinary glycosaminoglycan (uGAGs) assays showed abnormal profiles in 31 cases, and further quantitative urinary GAG evaluation and Thin Layer Chromatography (TLC) provided important additional information about the likely MPS diagnosis. The final diagnosis was confirmed by specific enzyme activity analysis in the DBS samples. CONCLUSIONS: The present study shows that the adoption of combined urinary substrate analysis and enzyme assays using dried blood spots can facilitate such diagnosis, offer an important tool for an appropriate supporting care, and a specific therapy, when available.


Subject(s)
Mucopolysaccharidoses/diagnosis , Mucopolysaccharidoses/urine , Urinalysis , Adolescent , Arylsulfatases/metabolism , Arylsulfatases/urine , Child , Child, Preschool , Chromatography, Thin Layer , Dried Blood Spot Testing/economics , Dried Blood Spot Testing/methods , Female , Glycosaminoglycans/analysis , Glycosaminoglycans/metabolism , Humans , Iduronidase/metabolism , Iduronidase/urine , Male , Morocco , Mucopolysaccharidoses/enzymology , Mucopolysaccharidoses/metabolism , Pilot Projects , Urinalysis/economics , Urinalysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...