Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 10(2): e0192321, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35234504

ABSTRACT

Togo has reported seasonal meningitis outbreaks caused by non-Neisseria meningitidis serogroup A (NmA) pathogens since the introduction of meningococcal serogroup A conjugate vaccine (MACV, MenAfriVac) in 2014. From 2016 to 2017, NmW caused several outbreaks. In early 2019, a NmC outbreak was detected in the Savanes region of Togo and its investigation is described here. Under case-based surveillance, epidemiological and clinical data, and cerebrospinal fluid specimens were collected for every suspected case of meningitis. Specimens were tested for meningitis pathogens using confirmatory microbiological and molecular methods. During epidemic weeks 9 to 15, 199 cases were reported, with 179 specimens being available for testing and 174 specimens (97.2%) were tested by at least one confirmatory method. The NmC was the predominant pathogen confirmed (93.9%), belonging to sequence type (ST)-9367 of clonal complex (CC) 10217. All NmC cases were localized to the West Kpendjal district of the Savanes region with attack rates ranging from 4.1 to 18.8 per 100,000 population and case fatality rates ranging up to 2.2% during weeks 9 to 15. Of the 93 NmC confirmed cases, 63.4% were males and 88.2% were in the 5 to 29 age group. This is the first report of a NmC meningitis outbreak in Togo. The changing epidemiology of bacterial meningitis in the meningitis belt post-MACV highlights the importance of monitoring of emerging strain and country preparedness for outbreaks in the region. IMPORTANCE The recent emergence of an invasive NmC strain in Togo is an example of the changing bacterial meningitis epidemiology in the meningitis belt post-MACV. The current epidemiology includes the regional circulation of various non-NmA serogroups, which emphasizes the need for effective molecular surveillance, laboratory diagnosis, and a multivalent vaccine that is effective against all serogroups in circulation.


Subject(s)
Meningitis, Bacterial , Meningitis, Meningococcal , Neisseria meningitidis , Disease Outbreaks , Female , Humans , Male , Meningitis, Bacterial/microbiology , Meningitis, Meningococcal/epidemiology , Meningitis, Meningococcal/microbiology , Meningitis, Meningococcal/prevention & control , Neisseria meningitidis/genetics , Serogroup , Togo/epidemiology
2.
J Infect ; 81(5): 712-718, 2020 11.
Article in English | MEDLINE | ID: mdl-32888978

ABSTRACT

Rapid diagnostic tests (RDTs) are increasingly recognized as valuable, transformative tools for the diagnosis of infectious diseases. Although there are a variety of meningitis RDTs currently available, certain product features restrict their use to specific levels of care and settings. For this reason, the development of meningitis RDTs for use at all levels of care, including those in low-resource settings, was included in the "Defeating Meningitis by 2030" roadmap. Here we address the limitations of available meningitis RDTs and present test options and specifications to consider when developing the next generation of meningitis RDTs.


Subject(s)
Malaria , Meningitis , Diagnostic Tests, Routine , Humans , Meningitis/diagnosis , Reagent Kits, Diagnostic , Sensitivity and Specificity
3.
J Infect Dis ; 220(220 Suppl 4): S175-S181, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31671436

ABSTRACT

Laboratories play critical roles in bacterial meningitis disease surveillance in the African meningitis belt, where the highest global burden of meningitis exists. Reinforcement of laboratory capacity ensures rapid detection of meningitis cases and outbreaks and a public health response that is timely, specific, and appropriate. Since 2008, joint efforts to strengthen laboratory capacity by multiple partners, including MenAfriNet, beginning in 2014, have been made in countries within and beyond the meningitis belt. Over the course of 10 years, national reference laboratories were supported in 5 strategically targeted areas: specimen transport systems, laboratory procurement systems, laboratory diagnosis, quality management, and laboratory workforce with substantial gains made in each of these areas. To support the initiative to eliminate meningitis by 2030, continued efforts are needed to strengthen laboratory systems.


Subject(s)
Clinical Laboratory Techniques , Laboratories , Meningitis, Bacterial/epidemiology , Africa South of the Sahara/epidemiology , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Disease Outbreaks , Health Workforce , History, 21st Century , Humans , Laboratories/organization & administration , Laboratories/supply & distribution , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/history , Meningitis, Bacterial/microbiology , Population Surveillance , Quality of Health Care
4.
J Infect Dis ; 220(220 Suppl 4): S182-S189, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31671450

ABSTRACT

BACKGROUND: Meningococcal serogroup A conjugate vaccine (MACV) was introduced in Chad during 2011-2012. Meningitis surveillance has been conducted nationwide since 2003, with case-based surveillance (CBS) in select districts from 2012. In 2016, the MenAfriNet consortium supported Chad to implement CBS in 4 additional districts and real-time polymerase chain reaction (rt-PCR) at the national reference laboratory (NRL) to improve pathogen detection. We describe analysis of bacterial meningitis cases during 3 periods: pre-MACV (2010-2012), pre-MenAfriNet (2013-2015), and post-MenAfriNet (2016-2018). METHODS: National surveillance targeted meningitis cases caused by Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae. Cerebrospinal fluid specimens, inoculated trans-isolate media, and/or isolates from suspected meningitis cases were tested via culture, latex, and/or rt-PCR; confirmed bacterial meningitis was defined by a positive result on any test. We calculated proportion of suspected cases with a specimen received by period, and proportion of specimens with a bacterial meningitis pathogen identified, by period, pathogen, and test. RESULTS: The NRL received specimens for 6.8% (876/12813), 46.4% (316/681), and 79.1% (787/995) of suspected meningitis cases in 2010-2012, 2013-2015, and 2016-2018, respectively, with a bacterial meningitis pathogen detected in 33.6% (294/876), 27.8% (88/316), and 33.2% (261/787) of tested specimens. The number of N. meningitidis serogroup A (NmA) among confirmed bacterial meningitis cases decreased from 254 (86.4%) during 2010-2012 to 2 (2.3%) during 2013-2015, with zero NmA cases detected after 2014. In contrast, proportional and absolute increases were seen between 2010-2012, 2013-2015, and 2016-2018 in cases caused by S. pneumoniae (5.1% [15/294], 65.9% [58/88], and 52.1% [136/261]), NmX (0.7% [2/294], 1.1% [1/88], and 22.2% [58/261]), and Hib (0.3% [1/294], 11.4% [10/88], and 14.9% [39/261]). Of specimens received at the NRL, proportions tested during the 3 periods were 47.7% (418), 53.2% (168), and 9.0% (71) by latex; 81.4% (713), 98.4% (311), and 93.9% (739) by culture; and 0.0% (0), 0.0% (0), and 90.5% (712) by rt-PCR, respectively. During the post-MenAfriNet period (2016-2018), 86.1% (678) of confirmed cases were tested by both culture and rt-PCR, with 12.5% (85) and 32.4% (220) positive by culture and rt-PCR, respectively. CONCLUSIONS: CBS implementation was associated with increased specimen referral. Increased detection of non-NmA cases could reflect changes in incidence or increased sensitivity of case detection with rt-PCR. Continued surveillance with the use of rt-PCR to monitor changing epidemiology could inform the development of effective vaccination strategies.


Subject(s)
Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/epidemiology , Real-Time Polymerase Chain Reaction , Adolescent , Adult , Chad/epidemiology , Child , Child, Preschool , Clinical Laboratory Techniques , Female , Humans , Infant , Male , Meningitis, Bacterial/microbiology , Population Surveillance , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Young Adult
5.
Virology ; 485: 145-52, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26255028

ABSTRACT

Lloviu virus (LLOV) is a new member of the filovirus family that also includes Ebola virus (EBOV) and Marburg virus (MARV). LLOV has not been cultured; however, its genomic RNA sequence indicates the coding capacity to produce homologs of the EBOV and MARV VP24, VP35, and VP40 proteins. EBOV and MARV VP35 proteins inhibit interferon (IFN)-alpha/beta production and EBOV VP35 blocks activation of the antiviral kinase PKR. The EBOV VP24 and MARV VP40 proteins inhibit IFN signaling, albeit by different mechanisms. Here we demonstrate that LLOV VP35 suppresses Sendai virus induced IFN regulatory factor 3 (IRF3) phosphorylation, IFN-α/ß production, and PKR phosphorylation. Additionally, LLOV VP24 blocks tyrosine phosphorylated STAT1 binding to karyopherin alpha 5 (KPNA5), STAT1 nuclear accumulation, and IFN-induced gene expression. LLOV VP40 lacks detectable IFN antagonist function. These activities parallel EBOV IFN inhibitory functions. EBOV and LLOV VP35 and VP24 proteins also inhibit IFN responses in bat cells. These data suggest that LLOV infection will block innate immune responses in a manner similar to EBOV.


Subject(s)
Chiroptera/virology , Filoviridae/genetics , Immunity, Innate , Viral Matrix Proteins/genetics , Viral Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Animals , Cell Line , Filoviridae/immunology , Filoviridae/pathogenicity , Gene Expression Regulation , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon-alpha/antagonists & inhibitors , Interferon-alpha/biosynthesis , Interferon-alpha/immunology , Interferon-beta/antagonists & inhibitors , Interferon-beta/biosynthesis , Interferon-beta/immunology , Phosphorylation , Protein Binding , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , Sendai virus/genetics , Sendai virus/immunology , Sequence Homology, Amino Acid , Signal Transduction , Viral Matrix Proteins/immunology , Viral Proteins/immunology , Viral Regulatory and Accessory Proteins/immunology , alpha Karyopherins/genetics , alpha Karyopherins/immunology , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/biosynthesis , eIF-2 Kinase/immunology
6.
J Infect Dis ; 212 Suppl 2: S219-25, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-25926685

ABSTRACT

Marburg viruses (MARVs) cause highly lethal infections in humans and nonhuman primates. Mice are not generally susceptible to MARV infection; however, if the strain is first adapted to mice through serial passaging, it becomes able to cause disease in this animal. A previous study correlated changes accrued during mouse adaptation in the VP40 gene of a MARV strain known as Ravn virus (RAVV) with an increased capacity to inhibit interferon (IFN) signaling in mouse cell lines. The MARV strain Ci67, which belongs to a different phylogenetic clade than RAVV, has also been adapted to mice and in the process the Ci67 VP40 acquired a different collection of genetic changes than did RAVV VP40. Here, we demonstrate that the mouse-adapted Ci67 VP40 more potently antagonizes IFN-α/ß-induced STAT1 and STAT2 tyrosine phosphorylation, gene expression, and antiviral activity in both mouse and human cell lines, compared with the parental Ci67 VP40. Ci67 VP40 is also demonstrated to target the activation of kinase Jak1. A single change at VP40 residue 79 was found to be sufficient for the increased VP40 IFN antagonism. These data argue that VP40 IFN-antagonist activity plays a key role in MARV pathogenesis in mice.


Subject(s)
Amino Acids/metabolism , Marburgvirus/metabolism , Marburgvirus/pathogenicity , Viral Matrix Proteins/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Interferon-alpha/metabolism , Interferon-beta/metabolism , Janus Kinase 1/metabolism , Marburg Virus Disease/metabolism , Marburg Virus Disease/virology , Mice , STAT1 Transcription Factor/metabolism , STAT2 Transcription Factor/metabolism
7.
Nat Immunol ; 16(5): 485-94, 2015 May.
Article in English | MEDLINE | ID: mdl-25822250

ABSTRACT

The human helicase senataxin (SETX) has been linked to the neurodegenerative diseases amyotrophic lateral sclerosis (ALS4) and ataxia with oculomotor apraxia (AOA2). Here we identified a role for SETX in controlling the antiviral response. Cells that had undergone depletion of SETX and SETX-deficient cells derived from patients with AOA2 had higher expression of antiviral mediators in response to infection than did wild-type cells. Mechanistically, we propose a model whereby SETX attenuates the activity of RNA polymerase II (RNAPII) at genes stimulated after a virus is sensed and thus controls the magnitude of the host response to pathogens and the biogenesis of various RNA viruses (e.g., influenza A virus and West Nile virus). Our data indicate a potentially causal link among inborn errors in SETX, susceptibility to infection and the development of neurologic disorders.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Influenza, Human/immunology , Orthomyxoviridae/physiology , RNA Helicases/metabolism , RNA Polymerase II/metabolism , Spinocerebellar Degenerations/genetics , West Nile Fever/immunology , West Nile virus/physiology , Animals , Cell Line, Tumor , Chlorocebus aethiops , Cytokines/metabolism , DNA Helicases , Dogs , Down-Regulation , Humans , Immunity, Innate/genetics , Interferon Regulatory Factor-3/metabolism , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Microarray Analysis , Multifunctional Enzymes , RNA Helicases/genetics , RNA Polymerase II/genetics , RNA, Small Interfering/genetics , Spinocerebellar Ataxias/congenital , Vero Cells , Virus Replication/genetics
8.
J Virol ; 88(24): 14440-50, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25297995

ABSTRACT

UNLABELLED: The Marburg virus VP40 protein is a viral matrix protein that spontaneously buds from cells. It also functions as an interferon (IFN) signaling antagonist by targeting Janus kinase 1 (JAK1). A previous study demonstrated that the VP40 protein of the Ravn strain of Marburg virus (Ravn virus [RAVV]) failed to block IFN signaling in mouse cells, whereas the mouse-adapted RAVV (maRAVV) VP40 acquired the ability to inhibit IFN responses in mouse cells. The increased IFN antagonist function of maRAVV VP40 mapped to residues 57 and 165, which were mutated during the mouse adaptation process. In the present study, we demonstrate that maRAVV VP40 lost the capacity to efficiently bud from human cell lines, despite the fact that both parental and maRAVV VP40s bud efficiently from mouse cell lines. The impaired budding in human cells corresponds with the appearance of protrusions on the surface of maRAVV VP40-expressing Huh7 cells and with an increased sensitivity of maRAVV VP40 to restriction by human tetherin but not mouse tetherin. However, transfer of the human tetherin cytoplasmic tail to mouse tetherin restored restriction of maRAVV VP40. Residues 57 and 165 were demonstrated to contribute to the failure of maRAVV VP40 to bud from human cells, and residue 57 was demonstrated to alter VP40 oligomerization, as assessed by coprecipitation assay, and to determine sensitivity to human tetherin. This suggests that RAVV VP40 acquired, during adaptation to mice, changes in its oligomerization potential that enhanced IFN antagonist function. However, this new capacity impaired RAVV VP40 budding from human cells. IMPORTANCE: Filoviruses, which include Marburg viruses and Ebola viruses, are zoonotic pathogens that cause severe disease in humans and nonhuman primates but do not cause similar disease in wild-type laboratory strains of mice unless first adapted to these animals. Although mouse adaptation has been used as a method to develop small animal models of pathogenesis, the molecular determinants associated with filovirus mouse adaptation are poorly understood. Our study demonstrates how genetic changes that accrued during mouse adaptation of the Ravn strain of Marburg virus have impacted the budding function of the viral VP40 matrix protein. Strikingly, we find impairment of mouse-adapted VP40 budding function in human but not mouse cell lines, and we correlate the impairment with an increased sensitivity of VP40 to restriction by human but not mouse tetherin and with changes in VP40 oligomerization. These data suggest that there are functional costs associated with filovirus adaptation to new hosts and implicate tetherin as a filovirus host restriction factor.


Subject(s)
Adaptation, Biological , Antigens, CD/metabolism , Interferons/antagonists & inhibitors , Marburgvirus/immunology , Marburgvirus/physiology , Viral Matrix Proteins/metabolism , Virus Release , Animals , Cell Line , GPI-Linked Proteins/metabolism , Humans , Marburgvirus/genetics , Mice , Serial Passage , Viral Matrix Proteins/genetics
9.
Cell Host Microbe ; 16(2): 187-200, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25121748

ABSTRACT

During antiviral defense, interferon (IFN) signaling triggers nuclear transport of tyrosine-phosphorylated STAT1 (PY-STAT1), which occurs via a subset of karyopherin alpha (KPNA) nuclear transporters. Many viruses, including Ebola virus, actively antagonize STAT1 signaling to counteract the antiviral effects of IFN. Ebola virus VP24 protein (eVP24) binds KPNA to inhibit PY-STAT1 nuclear transport and render cells refractory to IFNs. We describe the structure of human KPNA5 C terminus in complex with eVP24. In the complex, eVP24 recognizes a unique nonclassical nuclear localization signal (NLS) binding site on KPNA5 that is necessary for efficient PY-STAT1 nuclear transport. eVP24 binds KPNA5 with very high affinity to effectively compete with and inhibit PY-STAT1 nuclear transport. In contrast, eVP24 binding does not affect the transport of classical NLS cargo. Thus, eVP24 counters cell-intrinsic innate immunity by selectively targeting PY-STAT1 nuclear import while leaving the transport of other cargo that may be required for viral replication unaffected.


Subject(s)
Ebolavirus/physiology , STAT1 Transcription Factor/metabolism , Viral Proteins/chemistry , alpha Karyopherins/chemistry , Active Transport, Cell Nucleus , Binding, Competitive , Cell Nucleus/metabolism , Crystallography, X-Ray , HEK293 Cells , Humans , Hydrogen Bonding , Models, Molecular , Nuclear Localization Signals , Phosphoproteins/metabolism , Protein Interaction Domains and Motifs , Viral Proteins/metabolism
10.
J Virol Methods ; 193(2): 278-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23773809

ABSTRACT

Swine hepatitis E virus (HEV) is a zoonotic virus and pigs are considered as an important reservoir. Swine HEV infection is widespread and most pig herds are infected. Humans can be infected with swine HEV via consumption of undercooked pork or through direct contact with infected pigs. To minimize the risk of zoonotic transmission, sensitive tools to assess the HEV infection status of pigs and pork products are needed. The objective of this study was to develop a fluorescent microbead-based immunoassay (FMIA) for the detection of IgG antibodies against swine HEV and compare it to an in-house enzyme-linked immunoassay (ELISA). Three sets of samples were utilized: (A) samples from pigs infected experimentally with different strains of HEV (positive controls, n=72), (B) samples from known HEV-negative pigs (negative controls, n=62) and (C) samples from pigs of unknown HEV infection status (n=182). All samples were tested by both ELISA and FMIA. The results on the experimental samples with known HEV exposure indicate that both assays have a specificity of 100% while the sensitivity ranges from 84.6% (ELISA) to 92.3% (FMIA). The overall prevalence of HEV IgG antibodies in field samples from pigs with unknown HEV exposure was 21.9% (40/182) for the ELISA and 21.4% (39/182) for the FMIA. The two assays had an almost perfect overall agreement (Kappa=0.92).


Subject(s)
Antibodies, Viral/blood , Hepatitis E virus/immunology , Hepatitis E/diagnosis , Immunoglobulin G/blood , Immunologic Tests/methods , Animals , Fluorescence , Immunoassay/methods , Microspheres , Sensitivity and Specificity , Swine
11.
J Gen Virol ; 93(Pt 10): 2183-2194, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22837416

ABSTRACT

Hepatitis E virus (HEV) is an important but extremely understudied human pathogen. Genotypes 1 and 2 are restricted to humans, whereas genotypes 3 and 4 are zoonotic, infecting both humans and pigs. This report describes, for the first time, the successful rescue of infectious HEV in vitro and in vivo from cloned cDNA of a genotype 4 human HEV (strain TW6196E). The complete genomic sequence of the TW6196E virus was determined and a full-length cDNA clone (pHEV-4TW) was assembled. Capped RNA transcripts from the pHEV-4TW clone were replication competent in Huh7 cells and infectious in HepG2/C3A cells. Pigs inoculated intrahepatically with capped RNA transcripts from pHEV-4TW developed an active infection, as evidenced by faecal virus shedding and seroconversion, indicating the successful rescue of infectious genotype 4 HEV and cross-species infection of pigs by a genotype 4 human HEV. To demonstrate the utility of the genotype 4 HEV infectious clone and to evaluate the potential viral determinant(s) for species tropism, four intergenotypic chimeric clones were constructed by swapping various genomic regions between genotypes 1 and 4, and genotypes 1 and 3. All four chimeric clones were replication competent in Huh7 cells, but only the two chimeras with sequences swapped between genotypes 1 and 4 human HEVs produced viruses capable of infecting HepG2/C3A cells. None of the four chimeras was able to establish a robust infection in pigs. The availability of a genotype 4 HEV infectious clone affords an opportunity to delineate the molecular mechanisms of HEV cross-species infection in the future.


Subject(s)
DNA, Complementary/genetics , Genome, Viral , Hepatitis E virus/genetics , Liver/virology , RNA, Viral/genetics , Swine/virology , Amino Acid Sequence , Animals , Base Sequence , Cell Line, Tumor , Cloning, Molecular , Feces/virology , Genotype , Hep G2 Cells , Hepatitis E/virology , Humans , Molecular Sequence Data , RNA Caps/genetics , Sequence Analysis/methods , Virus Replication , Virus Shedding/genetics
12.
J Clin Microbiol ; 49(12): 4164-72, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21998412

ABSTRACT

Hepatitis E is recognized as a zoonosis, and swine are known reservoirs, but how broadly enzootic its causative agent, hepatitis E virus (HEV), is remains controversial. To determine the prevalence of HEV infection in animals, a serological assay with capability to detect anti-HEV-antibody across a wide variety of animal species was devised. Recombinant antigens comprising truncated capsid proteins generated from HEV-subgenomic constructs that represent all four viral genotypes were used to capture anti-HEV in the test sample and as an analyte reporter. To facilitate development and validation of the assay, serum samples were assembled from blood donors (n = 372), acute hepatitis E patients (n = 94), five laboratory animals (rhesus monkey, pig, New Zealand rabbit, Wistar rat, and BALB/c mouse) immunized with HEV antigens, and four pigs experimentally infected with HEV. The assay was then applied to 4,936 sera collected from 35 genera of animals that were wild, feral, domesticated, or otherwise held captive in the United States. Test positivity was determined in 457 samples (9.3%). These originated from: bison (3/65, 4.6%), cattle (174/1,156, 15%), dogs (2/212, 0.9%), Norway rats (2/318, 0.6%), farmed swine (267/648, 41.2%), and feral swine (9/306, 2.9%). Only the porcine samples yielded the highest reactivities. HEV RNA was amplified from one farmed pig and two feral pigs and characterized by nucleotide sequencing to belong to genotype 3. HEV infected farmed swine primarily, and the role of other animals as reservoirs of its zoonotic spread appears to be limited.


Subject(s)
Endemic Diseases , Hepatitis E virus/isolation & purification , Hepatitis E/veterinary , Animals , Antigens, Viral , Genotype , Hepatitis Antibodies/blood , Hepatitis E/epidemiology , Hepatitis E virus/classification , Hepatitis E virus/genetics , Humans , Molecular Sequence Data , RNA, Viral/genetics , Sequence Analysis, DNA , Seroepidemiologic Studies , United States/epidemiology
13.
Virus Res ; 159(1): 17-22, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21536085

ABSTRACT

Hepatitis E virus (HEV) is an important human pathogen. At least four recognized and two putative genotypes of mammalian HEV have been reported: genotypes 1 and 2 are restricted to humans whereas genotypes 3 and 4 are zoonotic. The current experimental vaccines are all based on a single strain of HEV, even though multiple genotypes of HEV are co-circulating in some countries and thus an individual may be exposed to more than one genotype. Genotypes 3 and 4 swine HEV is widespread in pigs and known to infect humans. Therefore, it is important to know if prior infection with a genotype 3 swine HEV will confer protective immunity against subsequent exposure to genotypes 3 and 4 human and swine HEV. In this study, specific-pathogen-free pigs were divided into 4 groups of 6 each. Pigs in the three treatment groups were each inoculated with a genotype 3 swine HEV, and 12 weeks later, challenged with the same genotype 3 swine HEV, a genotype 3 human HEV, and a genotype 4 human HEV, respectively. The control group was inoculated and challenged with PBS buffer. Weekly sera from all pigs were tested for HEV RNA and IgG anti-HEV, and weekly fecal samples were also tested for HEV RNA. The pigs inoculated with swine HEV became infected as evidenced by fecal virus shedding and viremia, and the majority of pigs also developed IgG anti-HEV prior to challenge at 12 weeks post-inoculation. After challenge, viremia was not detected and only two pigs challenged with swine HEV had 1-week fecal virus shedding, suggesting that prior infection with a genotype 3 swine HEV prevented pigs from developing viremia and fecal virus shedding after challenges with homologous and heterologous genotypes 3 and 4 HEV. The results from this study have important implications for future development of an effective HEV vaccine.


Subject(s)
Cross Protection , Hepatitis E virus/immunology , Hepatitis E/immunology , Hepatitis E/veterinary , Swine Diseases/immunology , Swine Diseases/prevention & control , Animals , Genotype , Hepatitis Antibodies/blood , Hepatitis E/prevention & control , Hepatitis E virus/classification , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Humans , Immunoglobulin G/blood , RNA, Viral/blood , Serum/immunology , Serum/virology , Swine , Time Factors
14.
Virus Res ; 156(1-2): 141-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21195119

ABSTRACT

Genotypes 1 and 2 hepatitis E virus (HEV) infect only humans whereas genotypes 3 and 4 HEV infect both humans and pigs. To evaluate the mechanism of cross-species HEV infection between humans and swine, in this study we constructed five intergenotypic chimeric viruses and tested for their infectivity in vitro and in pigs. We demonstrated that chimeric viruses containing the ORF2 capsid gene either alone or in combination with its adjacent 5' junction region (JR) and 3' noncoding region (NCR) from a genotype 4 human HEV in the backbone of a genotype 3 swine HEV are replication-competent in Huh7 cells and infectious in HepG2/C3A cells and in pigs, and thus supporting the hypothesis that genotypes 3 and 4 human HEV are of swine origin. However, chimeric viruses containing the JR+ORF2+3' NCR of genotypes 3 or 4 HEV in the backbone of genotype 1 human HEV failed to infect pigs, suggesting that other genomic regions such as 5' NCR and ORF1 may also be involved in HEV cross-species infection. The results from this study provide the first experimental evidence of the exchangeability of the capsid gene between genotype 3 swine HEV and genotype 4 human HEV, and have important implications for understanding the mechanism of HEV cross-species infection.


Subject(s)
Capsid Proteins/genetics , Hepatitis E virus/genetics , Hepatitis E virus/metabolism , Hepatitis E/veterinary , Swine Diseases/virology , Animals , Cell Line, Tumor , Gene Order , Genotype , Hep G2 Cells , Hepatitis E/virology , Hepatitis E virus/pathogenicity , Humans , Immunoglobulin G/blood , Swine , Viremia , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...